

Review of Ceramic Materials and Recent Development of Preparation Methods

Sasa Harkiah, Nurlaela Rauf, Dahlang Tahir*)

Department of Physics, Hasanuddin University, Makassar 90245, Indonesia

Information	Abstract
Article history:	Ceramics globally has been developed by various materials and methods to find suitable ceramics
Received: 23 May 2022	for specific applications. This paper discusses the development of several methods in ceramic
Accepted: 30 December 2022 Published: 31 December 2022	2019, the hot-pressing method was used to manufacture ceramic B4C and SiAlCO as raw material doping by (W, Ti)C. In 2002 up to 2018 sintering method by using fly ash as raw material with an additional K2CO3, Na2CO3, and Nb2O5. In 2008, the co-precipitation method was used for
Keywords:	CaCu3Ti4O12 (CCTO) as raw material until 2019, and then the ZrO2-Al2O3 as a newcomer
Ceramic materials	ceramic material. From 2001 up to 2017, the solid-state method was used with microwave for
Hot pressing	MgTiO and 3-CaTiO with Eu and (Lu, Gd) 2O3 as a dopant. This paper provided the four methods
Sintering	and the materials from reported references from 2000 up to now, as guidance in producing the
Solid-state	specific functional ceramics in the future.
Co-precipitation	
*) e-mail: dtahir@fmipa.unhas.ac.id	DOI: 10.22487/gravitasi.v21i2.15904

1. INTRODUCTION

Ceramics in the Greek word called "Keramicos" means combustible material. Ceramics are generally inorganic and non-metallic solids (made from powder materials), which have relatively high melting point properties and require high temperatures for manufactureand applicationn. Ceramicforming compounds and elements usually consist of several different compounds and elements or a combination of compounds, between metals and non-metals elements (mainly O, B, C, N), which can be oxides, carbides, borides, silicides. Their bonds are either ionic or a combination of covalent and ionic. For thousands of centuries ago, ceramics were known and made from natural raw materials. Ceramics present a broad range of attractive properties including thermal insulation, lightweight, high specific surface area, and thermal shock resistance compared to other materials. Ceramics do not deform at long operating cycles, have more economical maintenance costs, and have excellent quality stability in a wide range of organic solvents [1].

Along with the times, the demand for ceramic materials is increasing with more diverse materials and wider applications in the biomedical, building materials, electronics, and environmental fields. Some ceramic materials and fabrication methods have been widely developed with a more specialized nature of the task. Material, fabrication methods, and processing methods drive the characteristics of a ceramic including corrosion resistance, mechanical strength, density, and outstanding optical and electrical properties. various materials for the preparation of ceramic manufacture, the fabrication methods, and components of ceramic composites were investigated to demonstrate the contribution of various materials and fabrication methods in identifying the properties of a ceramic component [2].

2. FABRICATION METHOD OF CERAMICS

The manufacture of ceramics is carried out using the method as the origin Mechanical, structural, and physical properties such as compressive strength, crystalline phase, density, porosity, and linear expansion of ceramics [3]. Ceramic fabrication can be achieved through several methods and materials for making ceramics are shown in Table 1.

2.1 Preparation of Hot pressing

In the feng wang research, composite (Ti,Mo)Al/Al₂O₃ was successfully synthesized by hot pressing based on the Ti-Al-TiO₂-MoO₃ system where in-situ hot pressing utilizes low energy requirement, contaminant-free and stable interface and chemistry, which can overcome this weakness TiAl based alloys and improve in-service properties of the TiAl composite [70]. Figure 1 shows a schematic illustration hot pressing process for glass-ceramics.

Manufacturing by hot press or melt grow methods will usually produce ceramics with high strength and strong yielding strength [5]. In the 2020s, Shu-Rong Yan et al.1 made publications on the pressing method effects of SiC amount and morphology on the properties of TiB₂-based composites sintered by hot-pressing. Relative density studies reveal that some peaks associated with graphite carbon also appear in the SiCw-doped ceramic pattern. However, The XRD investigation confirmed the production of an in-situ TiC phase during the hot-pressing [72].

Figure 1. Schematic illustration of hot pressing sintering mold and sintering process [71].

Ceramic materials	Particle size	Purity (%)	Fabrication Methods	Ref
B4C	3–5 mm	>95	Hot pressing	[4]
(W, Ti) C.	1–2 mm	>99		
$Al_2O_3/Er_3Al5O_{12}/ZrO_2$		99.9	Hot pressing	[5]
Zirconia / veneering ceramic			Metal-ceramic technique	[6]
composites.				
Al ₂ O ₃ -YAG: Ce			High-power laser lighting	[7]
Ceramic zirconia, alumina, and			Single edge V-notched beam	[8]
silicon nitride			(SEVNB) method	
TiO_2			Sintered through microwave and	[9]
			conventional processes	
K_2CO_3 , Na_2CO_3 , and Nb_2O_5		99,95	Conventional powder synthesis	[10]
Clay-based material			Electrophoretic deposition (EPD)	[11]
Electric arc furnace dust			Two-stage heat treatment	[12]
Powder EAFD				
SiO_2 , Na_2CO_3 , and $CaCO_3$				
CaCO ₃ , TiO ₂ (Aldrich), Ta ₂ O ₅ ,		> 99	Conventional solid-state ceramic	[13]
and Nb_2O_5 (NFC)			route	F 4 F
MgTiO sintering 3–CaTiO			Solid-state method	[14]
Neodymium doped yttrium			Solid-state laser nanocrystalline	[15]
aluminum garnet (Y Al O)			fabrication process	
nanocrystalline				[17]
Ca_2SiO_4			Archimedes' method, technic	[16]
A 1			Indentation Vickers	[17]
Aluminum-magnesium			Hydrolysis (Mg6Al2(CO3)	[1/]
nydrocardon Elw och	0.2 500		(OH)10A4H2O) Dowder sintering technology	[19]
Fly ash	0,2 - 300		Powder sintering technology	[10]
Niobate $(M_{a+}Nb_{a}O_{a})$	111111			[10]
$\frac{1}{100}$ oksida rute		999		[19]
Alumina ceramics		<i>,,,,</i>	Abrasive jet machining (AIM)	[20]
Alumna cerannes			micro-machining method	[20]
Zirkonia			mero-maenning method	[21]
Ceramics Ba ₂ Zn ₁ xCaxWO ₆			Solid-state reaction	[21]
Hyperbranched alkyd / γ -	20 nm		Hydrothermal and decomposition	[22]
Al $_2O_2$ nanorods composite c	20 1111		methods	[20]
Methyltriacetoxysilane		95	Nanoindentation test method and	[24]
Methyltrimethoxysilane		98	the new substrate independent	[2]]
tetramethoxysi		97	nanoindentation test method.	
Magnesium ZK ₁₀				[25]
TiO ₂			Spray and flow coating method	[26]
Terbium gallium garnet (TGG)	158 nm		Co-precipitation method and	[27]
			sintering method.	
Fly ash, window waste glass, and fluorite (CaF ₂)	75µm		C C	[28]

Table 1. Ceramic materials, particle size, purity, and fabrication method

Ceramic materials	Particle size	Purity (%)	Fabrication Methods	Ref
Eu, doping (Lu, Gd) ₂ O ₃			The solid-state reaction method combined with vacuum sintering without sintering aids	[29]
Cerium doped lutetium aluminum garnet single crystal			Sintering in an oxygen atmosphere and post hot isostatic pressing	[30]
Lu (NO ₃) ₃ and Eu (NO ₃) ₃ CNTs and Al ₂ O ₃ powders	68 nm 10 and 5 mm.		Co-precipitation method Sintering method	[31] [32]
Nanocomposite PEO-LiX Al ₂ O ₃ TiC	(0,5 mm) and (0,8 mm)		Machining methods(electro- discharge machining (EDM), ultrasonic machining (USM)	[33] [34]
Fe ₂ O ₃ / TiO ₂			Co-precipitation method	[35]
Bio-amorphous SiOC/C- ceramic composites				[36]
Sialon – Si ₃ N ₄ graded nano- Polydimethylsiloxane (PDMS) and Zeolit ZSM-5 (Si / A)	4,9 m		Hot-pressing, pin-on-disk method Dispersion method	[37] [38]
Alumina and aluminum- magnesium alloys	9 mm		Gel casting	[39]
Zirconium diboride - zirconium carbide (ZrB ₂ – ZrC), zirconium diboride- zirconium nitride (ZrB ₂ -ZrN), zirconium diboride-silicon carbide (ZrB ₂ -SiC), and zirconium diboride-aluminum nitride (ZrB ₂ -AlN)			Hot pressing	[40]
Blast furnace slag			Method of preparing glass– ceramics that are processed directly through heat treatment	[41]
SiAlON	250 mm		powder bed, rapid cooling, and laminating.	[42]
MgO	diameter 12.7 mm, thick 1 mm		Hot-pressing	[43]
Multiphase ceramic waste		99,5	Melt processing	[44]
Bi_2O_3 , Al_2O_3 , $BaCO_3$, and TiO ₂		99,	Solid-state reaction method and sol-gel method	[45]
BaCO ₃ , CaCO ₃ TiO ₂ and SnO ₂		99.0, 99.0, 99,5, and 99,0	The conventional solid-state reaction method	[46]
BiFeO ₃			Conventional solid-state-reaction and mechanical activation assisted solid-state-reaction method	[47]
Calcium titanate (CaTiO ₃)	0.26 - 2.32 m		The conventional solid-state reaction method	[48]
Barium carbonate (BaCO ₃), zirconium(IV) oxide (ZrO ₂), and		99,8 99.7, 99.9,	Solid-state reactive sintering	[49]
Bi_2O_3 , TiO_2 , La_2O_3 , Na_2CO_3 , and $SrCO_3$	~ 10 mm and ~ 1 mm		Conventional solid-state reaction method.	[50]
MgAl ₂ O ₄ ZrB ₂ and SiC	2 mm and 5 μm	99 and 99	Hot pressing Hot pressing	[51] [52]

Ceramic materials	Particle size	Purity (%)	Fabrication Methods	Ref
MgAl ₂ O ₄	55 nm		Hot pressing	[53]
SiB0.5C1.5N0.5 powders	4–5 nm		Mechanical alloying and hot	[54]
			pressing	
Cr	75 m	99	Hot-pressing technology	[55]
Al	75 m	99,5		
Ti ₆ Al ₄ V	45 µm		Hot-pressing	[56]
TiB ₂ –SiC	1-2 µm		Reactive hot pressing	[57]
HfB ₂ –SiC			Hot-pressing and spark plasma	[58]
			sintering	
K_2CO_3 , Na_2CO_3 , and Nb_2O_5		99, 0	Cold sintering assisted sintering	[59]
		99,8		
		99, 99		
Bi ₂ O ₃ , Na ₂ CO ₃ , K ₂ CO ₃ ,		>99.9	Two-step sintering method	[60]
BaCO ₃ , TiO ₂ , and Nb ₂ O ₅				
Alumina	150 nm		Two-step sintering method	[61]
MgO, TiO ₂ , and CoO	diameter	≥98, ≥99,	Conventional sintering method	[62]
	10 mm	and ≥ 99		
	and thick			
	5 mm			
Y (NO ₃) ₃ 6H ₂ O,		>99,9,	Co-precipitation synthesis and	[63]
Al (NO ₃) ₃ 9H ₂ O		>99,9	two-step sintering	
$ZrO_2-Al_2O_3$			Co-precipitation method	[64]
Ni (NO ₃) ₂ .6H2O, Zn (NO ₃) ₂		99,999	Co-precipitation method	[65]
.6H ₂ O, and Fe (NO ₃) ₃ .9H ₂ O				
MnSO ₄ H ₂ O, copper sulfate		99, 99 and	Co-precipitation and solid-state	[66]
CuSO ₄₅ H ₂ O, and nickel sulfate		98,5	method	
NiSO ₄₆ H ₂ O				
CaCu ₃ Ti ₄ O ₁₂ (CCTO)			Co-precipitation method	[67]
Yttria (Y ₂ O ₃), aluminum		99.99, >98,	Co-precipitation method	[68]
nitrate nonahydrate		>99		
(Al(NO ₃) ₃ ·9H ₂ O, ammonium				
hydrogen carbonate				
(NH ₄ HCO ₃), and ammonium				
sulfate ((NH ₄) ₂ ·SO ₄)				
Fly ash			Powder sintering technology	[69]

In 2020 Shunheng Wang and Juncheng Liu prepared ceramic using hot-pressing sintering and melt grow Sample by comparing Al₂O₃/Er₃Al₅O₁₂/ZrO₂ ceramics with eutectic composition divided into four sets, directionless solidified eutectic ceramics (N-DSEC), directionally solidified eutectic ceramics (DSEC), rapidly quenched eutectic ceramics (RQEC) and hot pressing sintered ceramics (HPSC). The results obtained from the relationship between microstructure and mechanical properties investigated showed that DSEC had the highest flexural strength of 721.8 Mpa, RQEC had the highest hardness of 17.3 GPa, and HPSC had the highest fracture toughness of 6.8 MPa·m1/2, an improvement from density, increased microuniformity and smaller defects in the sample will benefit the mechanical properties of the sample [73]. Figure 1 shows a schematic illustration of hot-pressing methods and the results from reported references were summarized in Table 2.

Table 1 continue

In 2001, Jianxin has conducted research with ceramic base materials from B4C with (W,Ti)C doping which explains the effect of (W,Ti)C content on the mechanical and micro

properties of B₄C/(W,Ti)C ceramic composites with different solids. -Solution (W,Ti)C content produced by hot pressing method. The results show that a chemical reaction occurs for this system during hot pressing, and results in B₄C/TiB₂/W2B₅ composites with high density and better mechanical properties compared to monolithic B₄C ceramics. hardness decreased with increasing (W,Ti)C content, while fracture toughness and flexural strength continued to increase with increasing (W,Ti)C content up to 50 wt.% [4]. Figure 2 shows technological developments in ceramic using the hot-pressing method from the last few decades.

In 2010 S.B. Li et all used a hot pressing mechanism to synthesize Cr_2AlC ceramics. On the flexural strength, fracture toughness, and Vickers hardness of the fine-grained Cr_2AlC determined and compared with the values for the synthesized fine-grained Cr_2AlC has a high density of 99% which is higher than the coarse-grained Cr_2AlC (grain size is about 35μ m) i.e. 95% synthesized by hot pressing of unground Cr, Al, and C [55].

Materials	Preparation Method	Years	Ref
B4C doping (W, Ti) C	Hot pressing techniques	2001	[4]
MgO	Hot-pressing	2003	[43]
ZrB2–ZrC, ZrB2 -ZrN, ZrB2 –	Hot-pressing	2004	[40]
SiC and ZrB2 -AlN			
HfB ₂ –SiC	Hot-pressing and spark plasma sintering	2006	[58]
SiB0.5C1.5N0.5 powders	Mechanical alloying and hot pressing	2007	[54]
Cr and Al	Hot-pressing technology	2010	[55]
Sialon – Si3N ₄ graded nano	Hot-pressing, pin-on-disk method	2012	[37]
TiB ₂ –SiC	Reactive hot pressing	2013	[57]
ZrB ₂ and SiC	Hot-pressing	2015	[52]
Ti ₆ Al ₄ V	Hot-pressing	2016	[56]
$MgAl_2O_4$	Hot-pressing	2017	[51]
$MgAl_2O_4$	Hot-pressing	2018	[53]
$Al_2O_3/Er_3Al_5O_{12}/ZrO_2$	Hot-pressing	2020	[5]

Figure 2. Technological developments use of hot-pressing method 2001-2020

2.2 Preparation of Sintering method

In simple terms, sintering can be described as the application of heat and pressure (see Table 3). Since the main focus of the sintering process is to achieve maximum compression, sintering parameters such as temperature, pressure, and retention time will change until this is achieved. As shown in Figure 3, great efforts have been made to develop a sintering process for the complete compaction of bulk composites. This is the technological development of the sintering process from 2002-to 2018 [74]. The development of the sintering method in recent years has been carried out thoroughly. This is for bulk nanocomposite densification because the pores in the material significantly affect the mechanical properties, reducing porosity thereby the performance increasing of nanocomposites [75].

In 2019, Xiaoyan Liu at all has conducted research preparation of alumina ceramics by sintering method with a zirconia structure (ZTA) has a high level of strength, high hardness, high toughness, and good thermal resistance which can be applied to implants and biomedical [76]. One of the scientific papers published by Shan-Shan at all in 2019 stated the effect of sintering temperature on microstructure, shrinkage, porosity, phase composition, mechanical properties, and pore size distribution of ceramics through selective laser sintering of poly-hollow microspheres (PHM) Al₂O₃. This method is capable of directly preparing ceramic foams with complex shapes and control properties of ceramic foams [77].

Researchers made effort to study the sintering behavior, phase composition and microwave dielectric properties of $BaAl_2-2x(ZnSi)xSi_2O_8$ ceramics. Aluminum content has an important influence on the sintering temperature, besides the

sintering temperature, the phase of the $BaAl_2Si_2O_8$ transition is an important issue. Therefore, a feasible solution to this problem is to reduce the sintering temperature of $BaAl_2Si_2O_8$ ceramics [78].

Materials	Preparation Method	Years	Ref
Fly ash	Powder sintering technology	2002	[69]
Dicalcium silikat (Ca ₂ SiO ₄)	Sintering method	2004	[16]
Alumina	Two-step sintering method	2008	[61]
MgO, TiO ₂ , and CoO	Conventional sintering method	2011	[62]
TiO_2	sintered through microwave and	2012	[9]
	conventional processes		
CNTs and Al ₂ O ₃ powders	Sintering method	2012	[32]
Terbium gallium garnet (TGG)	Co-precipitation method and	2013	[27]
	sintering method		
Yttrium aluminum garnet	Co-precipitation synthesis and two-	2013	[63]
$(Y_3Al_5O_{12}, YAG)$	step sintering		
Bi ₂ O ₃ , Na ₂ CO ₃ , K ₂ CO ₃ , BaCO ₃ ,	Two-step sintering method	2013	[60]
TiO_2 , and Nb_2O_5			
	The solid-state reaction method	2017	[29]
Eu, doping (Lu, Gd) ₂ O ₃	combined with vacuum sintering		
	without sintering aids		
Cerium doped lutetium aluminum	Sintering in an oxygen atmosphere	2018	[30]
garnet single crystal	and post hot isostatic pressing		
K2CO3, Na ₂ CO ₃ , and Nb ₂ O ₅	Cold sintering assisted sintering	2018	[59]

Table 3. Classification of sintering methods from the last few decades

Figure 3. Technological developments for the Sintering method 2002-2018

2.3 Preparation of co-precipitation method

Various methods have been widely used, such as the sintering method [27], hot-pressing method [56], and co-precipitation method [79]. Of the various methods, coprecipitation is one of the easiest ways to make nanoparticles. The coprecipitation method can lower the reaction temperature at which the reagent mixture precipitates. This method is an easy way to synthesize highly reactive metal oxide nanopowders by low-

temperature sintering [80]. The co-precipitation method of various types of ceramic based materials and their development from 2008-2019 as shown in Table 4.

Advanced ultra-high-strength steels are well suited for a wide range of engineering applications. Nanoscale coprecipitation reinforcement in steels has received increasing attention in recent years and it is only in the new era to develop advanced steels with a good combination of mechanical, weldable, and radial properties. This review focuses on recent advances in computational alloy design, nanostructure characterization, and the unique properties of newly developed nanoscale precipitation reinforced steels [81]. In particular, our emphasis is on developing materials with co-precipitation methods used to manufacture better ceramics for the future. developments with environmentally friendly materials are increasingly being developed with a wider variety of applications. The coprecipitation approach can produce an excellent combination of various properties resulting from the synergistic combination of several types of nanoparticles with different compositions, microstructures, and micromechanical properties [82]. Figure 4 shows technological developments in ceramic making using the Co-precipitation method from the last few decades.

Materials	Preparation Method	Years	Ref
CaCu ₃ Ti ₄ O ₁₂ (CCTO)	Co-precipitation method	2008	[67]
Ni (NO ₃) ₂ .6H ₂ O, Zn (NO ₃) ₂ .6H ₂ O, and Fe (NO ₃) ₃ .9H ₂ O	Co-precipitation method	2010	[65]
Yttria (Y ₂ O ₃), aluminum nitrate nonahydrate (Al(NO ₃) ₃ ·9H ₂ O, ammonium hydrogen carbonate (NH ₄ HCO ₃), and ammonium sulfate (NH ₄) ₂ ·SO ₄)	Co-precipitation method	2012	[68]
Yttrium aluminum garnet (Y ₃ Al ₅ O ₁₂ , YAG)	Co-precipitation method and two-step sintering	2013	[63]
Terbium gallium garnet (TGG)	Co-precipitation method and sintering method.	2013	[27]
MnSO ₄ H ₂ O, copper sulfate CuSO ₄₅ H ₂ O, and nickel sulfate NiSO ₄₆ H ₂ O	Co-precipitation and solid-state method	2014	[27]
Fe ₂ O ₃ / TiO ₂	Co-precipitation method	2015	[35]
Lu $(NO_3)_3$ and Eu $(NO_3)_3$	Co-precipitation method	2018	[31]
$ZrO_2-Al_2O_3$	Co-precipitation method	2019	[64]

Figure 4. Technological developments use of Co-precipitation method 2008-2019

Zirconia-toughened alumina (ZTA) hardened alumina has been in great demand in recent years. The mechanical properties of aluminum oxide ceramics at room temperature are significantly improved by introducing a well-dispersed tetragonal zirconium oxide (t) polycrystal which transforms into a monoclinic (m) phase under loading [83]. Here, we present an industrial-scale coprecipitation route with ZTA synthesis and conventional sintering resulting in dense finegrained composite materials yielding ZTA composites with high critical stress intensity factor coefficients [64]. The flow chart of the ZTA processing is depicted in Figure 5. Deng-Feng et al. In 2013 reported Kinetic studies on Aging improvement in Cu-containing NTC ceramics prepared by the co-precipitation method, the structure, and properties of Mn2.15Cu0.4Ni0.45O₄ NTC ceramics were characterized using scanning electron microscopy, powder X-ray diffraction, temperature resistivity, accelerated aging assays within 125° C (aging temperature). The results obtained by the coprecipitation method showed a relatively low resistance deviation of 22.5% compared to 39.5% of the resulting resistance by the solid method [66].

Figure 5. Process flow diagram of ZTA composites via co-precipitation method [64].

2.4 Solid-state method

Today the world has entered an environmental epoch, the environmental problems have attracted more and more attention from the international society. In response to this, the solid-state method has great developmental potential and wide industrial application prospects in promoting energy efficiency and reducing pollution. The classification of solid-state methods from various materials was reported from 2001 to 2017 presented in Table 5. In 2019, Hao et al. demonstrated Lithium metal titanate (Li_2TiO_3) ceramic pebbles were fabricated from the powder synthesized via a low-temperature

solid-state precursor method [84]. The schematic illustration flowchart as shown in Figure 6.

So far, several studies have investigated the synthesis of Li_2TiO_3 nanoparticles by the solid-phase reaction. Therefore, improving solids methods for synthesizing nano-sized Li_2TiO_3 powders is a very meaningful task. Cold Solid Precursor (LTSSP) method was developed to produce Li_2TiO_3 nanopowder using H_2TiO_3 as a titanium source. Since H_2TiO_3 is an intermediate product of the industrial production of TiO₂, the LTSSP process is very economical and has the potential to be produced in large quantities [84].

Figure 6. Fabrication flowchart of Li2TiO3 ceramic pebbles via low-temperature solid-state precursor LTSSP method

Materials	Preparation Method	Years	Ref
MgTiO sintering 3–CaTiO temperature 3 microwaves	Solid-state method	2001	[14]
CaCO ₃ , TiO ₂ (Aldrich) and Ta ₂ O ₅ , Nb ₂ O ₅ (NFC, India)	Conventional solid-state ceramic route method	2002	[13]
Neodymium doped yttrium aluminum garnet (Y Al O) nanocrystalline	Solid-state laser nanocrystalline fabrication process	2002	[15]
BiFeO ₃ ceramic	Conventional solid-state-reaction and mechanical activation assisted solid-state-reaction method	2008	[47]
Barium carbonate (BaCO ₃), zirconium (IV) oxide (ZrO ₂), and yttrium (III) oxide (9Y ₂ O ₃)	Solid-state reactive sintering	2010	[49]
BaCO3, CaCO3, TiO2, and SnO2	The conventional solid-state reaction method	2012	[46]
Calcium titanate (CaTiO ₃)	Conventional solid-state reaction method.	2013	[48]
Ceramics Ba ₂ Zn ₁ xCaxWO ₆	Solid-state reaction	2014	[22]
MnSO ₄ H ₂ O, copper sulfate CuSO ₄₅ H ₂ O and NiSO ₄₆ H ₂ O	Co-precipitation and solid-state method	2014	[66]
Bi_2O_3 , Al_2O_3 , $BaCO_3$, and TiO_2	Solid-state reaction method and sol- gel method	2015	[45]
Eu, doping (Lu, Gd) ₂ O ₃	The solid-state reaction method combined with vacuum sintering without sintering aids	2017	[29]

Table 5. Classification of solid-state methods from various materials reported in the last few decades.

3. CONCLUSION AND FUTURE OUTLOOK

Various methods have been carried out in the process of ordering ceramics such as the sintering method, the hotpressing method, the co-precipitation method, and the solidstate method have been discussed in this paper. In 2001 the hot-pressing method was used to manufacture ceramics made from B4C with doping (W, Ti) C until 2019 with SiAlCO ceramic raw materials. In 2002 the sintering method was used to manufacture ceramics with fly ash as raw material until 2018 with ceramic raw materials K₂CO₃, Na₂CO₃, and Nb₂O₅. In 2008 the co-precipitation method was used for the manufacture of ceramics using CaCu₃Ti₄O₁₂ (CCTO) as raw material until 2019 with ZrO₂ - Al₂O₃ ceramic raw materials. In 2001 the solid-state method was used for the manufacture of ceramics with MgTiO sintering 3 - CaTiO temperature 3 microwave raw materials until 2017 with European Union ceramic raw materials, with (Lu, Gd)₂O₃ doping.

Based on the above results it is known that the four methods have been used from several ceramic materials from the 2000s until now. However, the physical mechanism of these methods and the effects on the performance of ceramics remains to be further studied. In the future, it needs to be addressed: the preparation time needs to be shortened, material preparation cost reduced, and improve the properties of produced the ceramics, more advanced preparation methods can also be explored. There is still open research for further improving the properties of ceramics and the research should be attracted more and more attention to becoming an intense and worldwide activity. For the new application of ceramics, interdisciplinary research between physicists, chemists, materials scientists, and engineers is also needed. It is expected to promote the sustained and rapid growth of ceramic research and future easily large-scale production and application.

REFERENCES

- T. Ayode Otitoju, P. Ugochukwu Okoye, G. Chen, Y. Li, M. Onyeka Okoye, and S. Li, "Advanced ceramic components: Materials, fabrication, and applications," *J. Ind. Eng. Chem.*, vol. 85, pp. 34–65, 2020, doi: 10.1016/j.jiec.2020.02.002.
- [2] Y. Liu, H. Lv, X. Lan, J. Leng, and S. Du, "Review of electroactive shape-memory polymer composite," *Compos. Sci. Technol.*, vol. 69, no. 13, pp. 2064–2068, 2009, doi: 10.1016/j.compscitech.2008.08.016.
- [3] N. A. N. Hisham *et al.*, "Crystal growth and mechanical properties of porous glass-ceramics derived from waste sodalime-silica glass and clam shells," *J. Mater. Res. Technol.*, vol. 9, no. 4, pp. 9295–9298, 2020, doi: 10.1016/j.jmrt.2020.06.009.
- [4] Q. Song, Z. H. Zhang, Z. Y. Hu, S. P. Yin, H. Wang, and Z. W. Ma, "Microstructure and mechanical properties of super-hard B 4 C ceramic fabricated by spark plasma sintering with (Ti 3 SiC 2 +Si) as sintering aid," *Ceram. Int.*, vol. 45, no. 7, pp. 8790– 8797, 2019, doi: 10.1016/j.ceramint.2019.01.204.
- [5] S. Wang and J. Liu, "Comparison of Al2O3/Er3Al5O12/ZrO2 ceramics with eutectic composition prepared using hot-pressing sintering and melt growing," *Mater. Sci. Eng. A*, vol. 774, no. January, p. 138932, 2020, doi: 10.1016/j.msea.2020.138932.
- [6] J. Fischer, B. Stawarzcyk, A. Trottmann, and C. H. F. Hämmerle, "Impact of thermal misfit on shear strength of veneering ceramic/zirconia composites," *Dent. Mater.*, vol. 25, no. 4, pp. 419–423, 2009, doi: 10.1016/j.dental.2008.09.003.
- [7] J. Xu *et al.*, "Comparative study of Al2O3-YAG:Ce composite ceramic and single crystal YAG:Ce phosphors for high-power laser lighting," *Ceram. Int.*, vol. 46, no. 11, pp. 17923–17928, 2020, doi: 10.1016/j.ceramint.2020.04.101.
- [8] G. A. Gogotsi, "Fracture toughness of ceramics and ceramic

composites," *Ceram. Int.*, vol. 29, no. 7, pp. 777–784, 2003, doi: 10.1016/S0272-8842(02)00230-4.

- [9] S. Marinel, D. H. Choi, R. Heuguet, D. Agrawal, and M. Lanagan, "Broadband dielectric characterization of TiO 2 ceramics sintered through microwave and conventional processes," *Ceram. Int.*, vol. 39, no. 1, pp. 299–306, 2013, doi: 10.1016/j.ceramint.2012.06.025.
- [10] H. Birol, D. Damjanovic, and N. Setter, "Preparation and characterization of (K0.5Na0.5) NbO3 ceramics," *J. Eur. Ceram. Soc.*, vol. 26, no. 6, pp. 861–866, 2006, doi: 10.1016/j.jeurceramsoc.2004.11.022.
- [11] I. Corni, M. P. Ryan, and A. R. Boccaccini, "Electrophoretic deposition: From traditional ceramics to nanotechnology," *J. Eur. Ceram. Soc.*, vol. 28, no. 7, pp. 1353–1367, 2008, doi: 10.1016/j.jeurceramsoc.2007.12.011.
- [12] P. Kavouras *et al.*, "Glass-ceramic materials from electric arc furnace dust," *J. Hazard. Mater.*, vol. 139, no. 3, pp. 424–429, 2007, doi: 10.1016/j.jhazmat.2006.02.043.
- [13] P. V. Bijumon, P. Mohanan, and M. T. Sebastian, "High dielectric constant low loss microwave dielectric ceramics in the Ca5Nb2-xTaxTiO12 system," *Mater. Lett.*, vol. 57, no. 8, pp. 1380–1384, 2003, doi: 10.1016/S0167-577X(02)00991-6.
- [14] C. L. Huang and M. H. Weng, "Improved high Q value of MgTiO3-CaTiO3 microwave dielectric ceramics at low sintering temperature," *Mater. Res. Bull.*, vol. 36, no. 15, pp. 2741–2750, 2001, doi: 10.1016/S0025-5408(01)00752-8.
- [15] J. Lu, K. I. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, "Neodymium doped yttrium aluminum garnet (Y3Al5O 12) nanocrystalline ceramics A new generation of solid state laser and optical materials," *J. Alloys Compd.*, vol. 341, no. 1–2, pp. 220–225, 2002, doi: 10.1016/S0925-8388(02)00083-X.
- [16] Z. Gou, J. Chang, and W. Zhai, "Preparation and characterization of novel bioactive dicalcium silicate ceramics," *J. Eur. Ceram. Soc.*, vol. 25, no. 9, pp. 1507–1514, 2005, doi: 10.1016/j.jeurceramsoc.2004.05.029.
- [17] R. Salomão, M. O. C. V. Bôas, and V. C. Pandolfelli, "Porous alumina-spinel ceramics for high temperature applications," *Ceram. Int.*, vol. 37, no. 4, pp. 1393–1399, 2011, doi: 10.1016/j.ceramint.2011.01.012.
- [18] T. W. Cheng and Y. S. Chen, "Characterisation of glass ceramics made from incinerator fly ash," *Ceram. Int.*, vol. 30, no. 3, pp. 343–349, 2004, doi: 10.1016/S0272-8842(03)00106-8.
- [19] R. C. Pullar, K. Okeneme, and N. M. N. Alford, "Temperature compensated niobate microwave ceramics with the columbite structure, M2+Nb2O6," *J. Eur. Ceram. Soc.*, vol. 23, no. 14, pp. 2479–2483, 2003, doi: 10.1016/S0955-2219(03)00133-X.
- [20] M. Wakuda, Y. Yamauchi, and S. Kanzaki, "Material response to particle impact during abrasive jet machining of alumina ceramics," *J. Mater. Process. Technol.*, vol. 132, no. 1–3, pp. 177–183, 2003, doi: 10.1016/S0924-0136(02)00848-8.
- [21] P. F. Manicone, P. Rossi Iommetti, and L. Raffaelli, "An overview of zirconia ceramics: Basic properties and clinical applications," *J. Dent.*, vol. 35, no. 11, pp. 819–826, 2007, doi: 10.1016/j.jdent.2007.07.008.
- [22] A. Gandhi and S. Keshri, "Microwave dielectric properties of double perovskite ceramics Ba2 Zn1-xCaxWO6 (x = 0 - 0.4)," *Ceram. Int.*, vol. 41, no. 3, pp. 3693–3700, 2015, doi: 10.1016/j.ceramint.2014.11.041.
- [23] M. S. Selim, H. Yang, Y. Li, F. Q. Wang, X. Li, and Y. Huang, "Ceramic hyperbranched alkyd/γ-Al2O3 nanorods composite as a surface coating," *Prog. Org. Coatings*, vol. 120, no. September 2017, pp. 217–227, 2018, doi: 10.1016/j.porgcoat.2018.04.002.
- [24] A. Tiwari and L. H. Hihara, "Nanoindentation and morphological analysis of novel green quasi-ceramic nanocoating materials," *Prog. Org. Coatings*, vol. 77, no. 7, pp. 1200–1207, 2014, doi: 10.1016/j.porgcoat.2014.03.022.
- [25] I. A. Kartsonakis, A. C. Balaskas, E. P. Koumoulos, C. A.

Charitidis, and G. Kordas, "ORMOSIL-epoxy coatings with ceramic containers for corrosion protection of magnesium alloys ZK10," *Prog. Org. Coatings*, vol. 76, no. 2–3, pp. 459–470, 2013, doi: 10.1016/j.porgcoat.2012.10.028.

- [26] M. Murugan, R. Subasri, T. N. Rao, A. S. Gandhi, and B. S. Murty, "Synthesis, characterization and demonstration of selfcleaning TiO 2 coatings on glass and glazed ceramic tiles," *Prog. Org. Coatings*, vol. 76, no. 12, pp. 1756–1760, 2013, doi: 10.1016/j.porgcoat.2013.05.012.
- [27] X. Li et al., "Fabrication and characterizations of highly transparent Tb3Ga5O12 magneto-optical ceramics," Opt. Mater. (Amst)., vol. 88, no. November 2018, pp. 238–243, 2019, doi: 10.1016/j.optmat.2018.11.048.
- [28] U. Bayarzul and J. Temuujin, "Characterization of glass ceramics produced from natural and waste raw materials," *Solid State Phenom.*, vol. 271 SSP, pp. 23–27, 2018, doi: 10.4028/www.scientific.net/SSP.271.23.
- [29] M. Cao *et al.*, "Effect of Gd substitution on structure and spectroscopic properties of (Lu,Gd)2O3:Eu ceramic scintillator," *Opt. Mater. (Amst).*, vol. 76, pp. 323–328, 2018, doi: 10.1016/j.optmat.2017.12.053.
- [30] X. Chen *et al.*, "Fabrication and optical properties of cerium doped Lu3Ga3Al2O12 scintillation ceramics," *Opt. Mater.* (*Amst*)., vol. 85, no. February, pp. 121–126, 2018, doi: 10.1016/j.optmat.2018.08.048.
- [31] W. Xie *et al.*, "Fabrication and properties of Eu:Lu2O3 transparent ceramics for X-ray radiation detectors," *Opt. Mater.* (*Amst*)., vol. 80, no. March, pp. 22–29, 2018, doi: 10.1016/j.optmat.2018.04.029.
- [32] V. Puchy, P. Hvizdos, J. Dusza, F. Kovac, F. Inam, and M. J. Reece, "Wear resistance of Al2O3-CNT ceramic nanocomposites at room and high temperatures," *Ceram. Int.*, vol. 39, no. 5, pp. 5821–5826, 2013, doi: 10.1016/j.ceramint.2012.12.100.
- [33] F. Croce, L. L. Persi, B. Scrosati, F. Serraino-Fiory, E. Plichta, and M. A. Hendrickson, "Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes," *Electrochim. Acta*, vol. 46, no. 16, pp. 2457– 2461, 2001, doi: 10.1016/S0013-4686(01)00458-3.
- [34] D. Jianxin and L. Taichiu, "Surface integrity in electrodischarge machining, ultrasonic machining, and diamond saw cutting of ceramic composites," *Ceram. Int.*, vol. 26, no. 8, pp. 825–830, 2000, doi: 10.1016/S0272-8842(00)00024-9.
- [35] R. Li, Y. Jia, N. Bu, J. Wu, and Q. Zhen, "Photocatalytic degradation of methyl blue using Fe2O3/TiO2 composite ceramics," *J. Alloys Compd.*, vol. 643, pp. 88–93, 2015, doi: 10.1016/j.jallcom.2015.03.266.
- [36] C. Zollfrank, R. Kladny, H. Sieber, and P. Greil, "Biomorphous SiOC/C-ceramic composites from chemically modified wood templates," *J. Eur. Ceram. Soc.*, vol. 24, no. 2, pp. 479–487, 2004, doi: 10.1016/S0955-2219(03)00202-4.
- [37] G. Zheng, J. Zhao, and Y. Zhou, "Friction and wear behaviors of Sialon-Si 3N 4 graded nano-composite ceramic materials in sliding wear tests and in cutting processes," *Wear*, vol. 290– 291, pp. 41–50, 2012, doi: 10.1016/j.wear.2012.05.020.
- [38] G. Liu, F. Xiangli, W. Wei, S. Liu, and W. Jin, "Improved performance of PDMS/ceramic composite pervaporation membranes by ZSM-5 homogeneously dispersed in PDMS via a surface graft/coating approach," *Chem. Eng. J.*, vol. 174, no. 2–3, pp. 495–503, 2011, doi: 10.1016/j.cej.2011.06.004.
- [39] J. Binner, H. Chang, and R. Higginson, "Processing of ceramicmetal interpenetrating composites," *J. Eur. Ceram. Soc.*, vol. 29, no. 5, pp. 837–842, 2009, doi: 10.1016/j.jeurceramsoc.2008.07.034.
- [40] G. J. Zhang, M. Ando, J. F. Yang, T. Ohji, and S. Kanzaki, "Boron carbide and nitride as reactants for in situ synthesis of boride-containing ceramic composites," *J. Eur. Ceram. Soc.*, vol. 24, no. 2, pp. 171–178, 2004, doi: 10.1016/S0955-2219(03)00607-1.
- [41] Y. Zhao, D. Chen, Y. Bi, and M. Long, "Preparation of low cost

glass-ceramics from molten blast furnace slag," *Ceram. Int.*, vol. 38, no. 3, pp. 2495–2500, 2012, doi: 10.1016/j.ceramint.2011.11.018.

- [42] N. Çalś, Ş. R. Kuşhan, F. Kara, and H. Mandal, "Functionally graded SiAlON ceramics," *J. Eur. Ceram. Soc.*, vol. 24, no. 12, pp. 3387–3393, 2004, doi: 10.1016/j.jeurceramsoc.2003.10.019.
- [43] Y. Fang, D. Agrawal, G. Skandan, and M. Jain, "Fabrication of translucent MgO ceramics using nanopowders," *Mater. Lett.*, vol. 58, no. 5, pp. 551–554, 2004, doi: 10.1016/S0167-577X(03)00560-3.
- [44] J. Amoroso *et al.*, "Melt processed multiphase ceramic waste forms for nuclear waste immobilization," *J. Nucl. Mater.*, vol. 454, no. 1–3, pp. 12–21, 2014, doi: 10.1016/j.jnucmat.2014.07.035.
- [45] M. Liu *et al.*, "Temperature stability of dielectric properties for xBiAlO3-(1-x)BaTiO3 ceramics," *J. Eur. Ceram. Soc.*, vol. 35, no. 8, pp. 2303–2311, 2015, doi: 10.1016/j.jeurceramsoc.2015.02.015.
- [46] M. Chen *et al.*, "Polymorphic phase transition and enhanced piezoelectric properties in (Ba0.9Ca0.1)(Ti1-xSnx)O3 leadfree ceramics," *Mater. Lett.*, vol. 97, pp. 86–89, 2013, doi: 10.1016/j.matlet.2012.12.067.
- [47] D. Maurya, H. Thota, K. S. Nalwa, and A. Garg, "BiFeO3 ceramics synthesized by mechanical activation assisted versus conventional solid-state-reaction process: A comparative study," *J. Alloys Compd.*, vol. 477, no. 1–2, pp. 780–784, 2009, doi: 10.1016/j.jallcom.2008.10.155.
- [48] Y. J. Wong, J. Hassan, and M. Hashim, "Dielectric properties, impedance analysis and modulus behavior of CaTiO3 ceramic prepared by solid state reaction," *J. Alloys Compd.*, vol. 571, pp. 138–144, 2013, doi: 10.1016/j.jallcom.2013.03.123.
- [49] J. Tong, D. Clark, M. Hoban, and R. O'Hayre, "Cost-effective solid-state reactive sintering method for high conductivity proton conducting yttrium-doped barium zirconium ceramics," *Solid State Ionics*, vol. 181, no. 11–12, pp. 496–503, 2010, doi: 10.1016/j.ssi.2010.02.008.
- [50] Q. Li *et al.*, "Enhanced energy-storage performance of (1x)(0.72Bi0.5Na0.5TiO3-0.28Bi0.2Sr0.7□0.1TiO3)-xLa ceramics," *J. Alloys Compd.*, vol. 775, pp. 116–123, 2019, doi: 10.1016/j.jallcom.2018.10.092.
- [51] K. Waetzig and T. Hutzler, "Highest UV-vis transparency of MgAl2O4 spinel ceramics prepared by hot pressing with LiF," *J. Eur. Ceram. Soc.*, vol. 37, no. 5, pp. 2259–2263, 2017, doi: 10.1016/j.jeurceramsoc.2017.01.010.
- [52] M. Shahedi Asl, I. Farahbakhsh, and B. Nayebi, "Characteristics of multi-walled carbon nanotube toughened ZrB2-SiC ceramic composite prepared by hot pressing," *Ceram. Int.*, vol. 42, no. 1, pp. 1950–1958, 2016, doi: 10.1016/j.ceramint.2015.09.165.
- [53] L. L. Zhu *et al.*, "Fabrication of transparent MgAl2O4 from commercial nanopowders by hot-pressing without sintering additive," *Mater. Lett.*, vol. 219, pp. 8–11, 2018, doi: 10.1016/j.matlet.2018.02.010.
- [54] Z. H. Yang, Y. Zhou, D. C. Jia, and Q. C. Meng, "Microstructures and properties of SiB0.5C1.5N0.5 ceramics consolidated by mechanical alloying and hot pressing," *Mater. Sci. Eng. A*, vol. 489, no. 1–2, pp. 187–192, 2008, doi: 10.1016/j.msea.2007.12.010.
- [55] S. B. Li, W. B. Yu, H. X. Zhai, G. M. Song, W. G. Sloof, and S. van der Zwaag, "Mechanical properties of low temperature synthesized dense and fine-grained Cr2AlC ceramics," *J. Eur. Ceram. Soc.*, vol. 31, no. 1–2, pp. 217–224, 2011, doi: 10.1016/j.jeurceramsoc.2010.08.014.
- [56] G. Miranda *et al.*, "Design of Ti6Al4V-HA composites produced by hot pressing for biomedical applications," *Mater. Des.*, vol. 108, no. July, pp. 488–493, 2016, doi: 10.1016/j.matdes.2016.07.023.
- [57] G. Zhao, C. Huang, H. Liu, B. Zou, H. Zhu, and J. Wang, "A study on in-situ synthesis of TiB2-SiC ceramic composites by

reactive hot pressing," *Ceram. Int.*, vol. 40, no. 1 PART B, pp. 2305–2313, 2014, doi: 10.1016/j.ceramint.2013.07.152.

- [58] F. Monteverde, "Ultra-high temperature HfB2-SiC ceramics consolidated by hot-pressing and spark plasma sintering," J. Alloys Compd., vol. 428, no. 1–2, pp. 197–205, 2007, doi: 10.1016/j.jallcom.2006.01.107.
- [59] J. Ma *et al.*, "Composition, microstructure and electrical properties of K0.5Na0.5NbO3 ceramics fabricated by cold sintering assisted sintering," *J. Eur. Ceram. Soc.*, vol. 39, no. 4, pp. 986–993, 2019, doi: 10.1016/j.jeurceramsoc.2018.11.044.
- [60] J. Ding *et al.*, "Enhanced energy-storage properties of 0.89Bi0.5Na 0.5TiO3-0.06BaTiO3-0.05K0.5Na 0.5NbO3 lead-free anti-ferroelectric ceramics by two-step sintering method," *Mater. Lett.*, vol. 114, pp. 107–110, 2014, doi: 10.1016/j.matlet.2013.09.103.
- [61] Z. Razavi Hesabi, M. Haghighatzadeh, M. Mazaheri, D. Galusek, and S. K. Sadrnezhaad, "Suppression of grain growth in sub-micrometer alumina via two-step sintering method," *J. Eur. Ceram. Soc.*, vol. 29, no. 8, pp. 1371–1377, 2009, doi: 10.1016/j.jeurceramsoc.2008.08.027.
- [62] L. Li, X. Ding, and Q. Liao, "Reaction-sintering method for ultra-low loss (Mg0.95Co 0.05)TiO3 ceramics," J. Alloys Compd., vol. 509, no. 26, pp. 7271–7276, 2011, doi: 10.1016/j.jallcom.2011.04.062.
- [63] X. Li, B. Zheng, T. Odoom-Wubah, and J. Huang, "Coprecipitation synthesis and two-step sintering of YAG powders for transparent ceramics," *Ceram. Int.*, vol. 39, no. 7, pp. 7983– 7988, 2013, doi: 10.1016/j.ceramint.2013.03.064.
- [64] P. K. Rao, P. Jana, M. I. Ahmad, and P. K. Roy, "Synthesis and characterization of zirconia toughened alumina ceramics prepared by co-precipitation method," *Ceram. Int.*, vol. 45, no. 13, pp. 16054–16061, 2019, doi: 10.1016/j.ceramint.2019.05.121.
- [65] T. Jahanbin, M. Hashim, and K. Amin Mantori, "Comparative studies on the structure and electromagnetic properties of Ni-Zn ferrites prepared via co-precipitation and conventional ceramic processing routes," *J. Magn. Magn. Mater.*, vol. 322, no. 18, pp. 2684–2689, 2010, doi: 10.1016/j.jmmm.2010.04.008.
- [66] D. F. Li, S. X. Zhao, K. Xiong, H. Q. Bao, and C. W. Nan, "Aging improvement in Cu-containing NTC ceramics prepared by co-precipitation method," *J. Alloys Compd.*, vol. 582, pp. 283–288, 2014, doi: 10.1016/j.jallcom.2013.08.014.
- [67] B. Barbier *et al.*, "CaCu3Ti4O12 ceramics from coprecipitation method: Dielectric properties of pellets and thick films," *J. Eur. Ceram. Soc.*, vol. 29, no. 4, pp. 731–735, 2009, doi: 10.1016/j.jeurceramsoc.2008.07.042.
- [68] J. Li *et al.*, "Co-precipitation synthesis route to yttrium aluminum garnet (YAG) transparent ceramics," *J. Eur. Ceram. Soc.*, vol. 32, no. 11, pp. 2971–2979, 2012, doi: 10.1016/j.jeurceramsoc.2012.02.040.
- [69] T. W. Cheng, T. H. Ueng, Y. S. Chen, and J. P. Chiu, "Production of glass-ceramic from incinerator fly ash," *Ceram. Int.*, vol. 28, no. 7, pp. 779–783, 2002, doi: 10.1016/S0272-8842(02)00043-3.
- [70] F. Wang, Y. Zhao, C. Yang, N. Fan, and J. Zhu, "Effect of MoO3 on microstructure and mechanical properties of (Ti,Mo)Al/Al2O3 composites by in situ reactive hot pressing," *Ceram. Int.*, vol. 42, no. 1, pp. 1–8, 2016, doi: 10.1016/j.ceramint.2015.08.138.
- [71] M. He, J. Jia, J. Zhao, X. Qiao, J. Du, and X. Fan, "Glassceramic phosphors for solid state lighting: A review," *Ceram. Int.*, vol. 47, no. 3, pp. 2963–2980, 2021, doi: 10.1016/j.ceramint.2020.09.227.
- [72] S. R. Yan, Z. Lyu, and L. K. Foong, "Effects of SiC amount and morphology on the properties of TiB2-based composites sintered by hot-pressing," *Ceram. Int.*, vol. 46, no. 11, pp. 18813–18825, 2020, doi: 10.1016/j.ceramint.2020.04.199.
- [73] S. K. Hubadillah *et al.*, "Fabrications and applications of low cost ceramic membrane from kaolin: A comprehensive

review," *Ceram. Int.*, vol. 44, no. 5, pp. 4538–4560, 2018, doi: 10.1016/j.ceramint.2017.12.215.

- [74] M. A. Awotunde, A. O. Adegbenjo, B. A. Obadele, M. Okoro, B. M. Shongwe, and P. A. Olubambi, "Influence of sintering methods on the mechanical properties of aluminium nanocomposites reinforced with carbonaceous compounds: A review," *J. Mater. Res. Technol.*, vol. 8, no. 2, pp. 2432–2449, 2019, doi: 10.1016/j.jmrt.2019.01.026.
- [75] R. Abedinzadeh, S. M. Safavi, and F. Karimzadeh, "A study of pressureless microwave sintering, microwave-assisted hot press sintering and conventional hot pressing on properties of aluminium/alumina nanocomposite," *J. Mech. Sci. Technol.*, vol. 30, no. 5, pp. 1967–1972, 2016, doi: 10.1007/s12206-016-0402-4.
- [76] X. Liu, B. Zou, H. Xing, and C. Huang, "The preparation of ZrO2-Al2O3 composite ceramic by SLA-3D printing and sintering processing," *Ceram. Int.*, vol. 46, no. 1, pp. 937–944, 2020, doi: 10.1016/j.ceramint.2019.09.054.
- [77] S. S. Liu, M. Li, J. M. Wu, A. N. Chen, Y. S. Shi, and C. H. Li, "Preparation of high-porosity Al2O3 ceramic foams via selective laser sintering of Al2O3 poly-hollow microspheres," *Ceram. Int.*, vol. 46, no. 4, pp. 4240–4247, 2020, doi: 10.1016/j.ceramint.2019.10.144.
- [78] X. Q. Song *et al.*, "Sintering behaviour and microwave dielectric properties of BaAl2–2x(ZnSi)xSi2O8 ceramics," *J. Eur. Ceram. Soc.*, vol. 38, no. 4, pp. 1529–1534, 2018, doi: 10.1016/j.jeurceramsoc.2017.10.053.
- [79] A. K. Mishra, S. Bandyopadhyay, and D. Das, "Structural and magnetic properties of pristine and Fe-doped NiO nanoparticles

synthesized by the co-precipitation method," *Mater. Res. Bull.*, vol. 47, no. 9, pp. 2288–2293, 2012, doi: 10.1016/j.materresbull.2012.05.046.

- [80] M. A. Rahman, R. Radhakrishnan, and R. Gopalakrishnan, "Structural, optical, magnetic and antibacterial properties of Nd doped NiO nanoparticles prepared by co-precipitation method," *J. Alloys Compd.*, vol. 742, pp. 421–429, 2018, doi: 10.1016/j.jallcom.2018.01.298.
- [81] Z. B. Jiao, J. H. Luan, M. K. Miller, Y. W. Chung, and C. T. Liu, "Co-precipitation of nanoscale particles in steels with ultra-high strength for a new era," *Mater. Today*, vol. 20, no. 3, pp. 142–154, 2017, doi: 10.1016/j.mattod.2016.07.002.
- [82] A. Saha and G. B. Olson, "Computer-aided design of transformation toughened blast resistant naval hull steels: Part i," *J. Comput. Mater. Des.*, vol. 14, no. 2, pp. 177–200, 2007, doi: 10.1007/s10820-006-9031-z.
- [83] D. Jayaseelan, T. Nishikawa, H. Awaji, and F. D. Gnanam, "Pressureless sintering of sol-gel derived alumina-zirconia composites," *Mater. Sci. Eng. A*, vol. 256, no. 1–2, pp. 265– 270, 1998, doi: 10.1016/s0921-5093(98)00801-6.
- [84] H. Guo *et al.*, "Low-cost fabrication of Li2TiO3 tritium breeding ceramic pebbles via low-temperature solid-state precursor method," *Ceram. Int.*, vol. 45, no. 14, pp. 17114– 17119, 2019, doi: 10.1016/j.ceramint.2019.05.263.
- [85] H. Liu, C. Li, H. P. Zhang, L. J. Fu, Y. P. Wu, and H. Q. Wu, "Kinetic study on LiFePO4/C nanocomposites synthesized by solid state technique," *J. Power Sources*, vol. 159, no. 1 SPEC. ISS., pp. 717–720, 2006, doi: 10.1016/j.jpowsour.2005.10.098.