Main Article Content

Abstract

A review has been carried out on the development of Biodegradable Foam (Bio-foam) with the main ingredient of Kepok banana weevil starch as a breakthrough in environmentally friendly food and beverage packaging while providing innovative solutions. The best composition of bio-foam was obtained from several kinds of literature, including the ratio of banana cob starch and sepiolite fibre used of 60:40 with the addition of 10% v/v of PVA which was able to produce smaller pore size of 0.2-1.0 m, strong pressure >4.02 MPa, melting point 166.50℃ with a heat flow of -12.38 MW. The addition of 10% oregano essential oil in the pre-bio foam sample has lower water solubility and better mechanical resistance, as well as having a more effective ability to resist Salmonella (gram-negative bacteria) and L. Monocytogenes (gram-positive bacteria). Banana weevil bio-foam can be completely degraded after two months faster than styrofoam which takes approximately 80 years

Article Details

How to Cite
Novianty, Puspita, E., Suminah, Arsyad, F. S., & Idha Royani. (2022). Biodegradable Foam (Bio-foam) from Banana Weevil as an Environmentally Friendly Styrofoam Generation. Gravitasi, 21(2), 44-48. https://doi.org/10.22487/gravitasi.v21i2.15874

References

  1. “Pengaruh Penambahan Berbagai Modifikasi Serat Tandan Kosong Sawit pada Sifat Fungsional Biodegradable Foam, Jurnal Penelitian Pascapanen Pertanian, vol. 3, no. 13, pp. 146-155, doi: 10.21082/jpasca.v13n3.2016.146-155.
  2. “Effect of Composition on Physical Properties of Biofoam from the Combination of Sorghum and Dried Mango Leaves,” vol. 3, no. 7, pp. 20–22.
  3. “Pengaruh Penambahan Berbagai Modifikasi Serat Tandan Kosong Sawit Pada Sifat Fungsional Biodegradable Foam,” J. Penelit. Pascapanen Pertan., vol. 13, no. 3, p. 146, doi: 10.21082/jpasca.v13n3.2016.146-155.
  4. “Kajian Teknologi Produksi Biodegradable Foam Berbasis Pati dan Selulosa sebagai Kemasan Ramah Lingkungan : Studi Pustaka,” vol. 6, no. 3, pp. 3947–3954.
  5. “Elemen Interior Berbahan Baku Pengolahan Sampah Styrofoam Dan Sampah Kulit Jeruk,” J. Intra, vol. 5, no. 2, pp. 144–153.
  6. “Biodegradable Foam dari Bonggol Pisang dan Ubi Nagara sebagai Kemasan Makanan yang Ramah Lingkungan,” Chairul Irawan, pp. 33–42.
  7. “Utilization of Solid Waste from Refined Sugar Industry (Filter Cake) as Biodegradable Foam (Biofoam),” IOP Conf. Ser. Earth Environ. Sci., vol. 473, no. 1, doi: 10.1088/1755-1315/473/1/012108.
  8. “Fabrication of Biodegradable Poly (Lactic Acid)/Carbon Nanotube Nanocomposite Foams: Significant Improvement on Rheological Property and Foamability,” International Journal of Biological Macromolecules, vol. 2020, no. 163, pp. 1175-1186, doi: 10.1016/j.ijbiomac.2020.07.094.
  9. ”Fabrication and Mechanical Properties of Hybrid Composites Between Pineapple Fiber/Styrofoam Particle/Paper Tissue,” Materialstoday: Proceedings, vol. 2019, no. 17, pp. 1444-1450, doi: 10.1016/j.matpr.2019.06.166.
  10. ”Cellulose Fiber Enhances The Physical Characteristics of Extruded Biodegradable Cassava Starch Foams,” Industrial Crops &Products, vol. 2019, no. 142, pp. 1-8, doi: 10.1016/j.indcrop.2019.111810.
  11. ” Assessing The Effect of PLA, Cellulose Microfibers and CaCO3 on The Properties of Starch-Based Foams Using a Factorial Design,” Polymer Testing, vol. 2020, no. 86, pp. 1-10, doi: 10.1016/j.polymertesting.2020.106482.
  12. “Bioactive Andean Sweet Potato Starch-Based Foam Incorporated with Oregano or Thyme Essential Oil,” Food Packaging and Shelf Life, vol. 2020, no. 23, pp.1-8, doi: 10.1016/j.fpsl.2019.100457.
  13. “Effect of Poly (Lactic Acid) Coating on Mechanical and Physical Properties of Thermoplastic Starch Foams from Potato Starch,” Progress in Organic Coatings, vol. 18, no. 118, pp. 91-96, doi: 10.1016/j.porgcoat.2018.01.029.
  14. ” Bionanocomposite Foams Based on The Assembly of Starch and Alginate with Sepiolite Fibrous Clay,” International Journal of Biological Macromolecules, vol. 20, no. 187, pp. 359-367, doi: 10.1016/j.carbpol.2016.11.079.
  15. ”Microstructure and Physical Properties of Thermoplastic Corn Starch Foams as Influenced by Polyvinyl Alcohol and Plasticizer Contents,” International Journal of Biological Macromolecules, vol. 20, no. 157, pp. 359-367, doi: 10.1016/j.ijbiomac.2020.04.222.
  16. “Biodegradable Foam dari Bonggo Pisang dan Ubi Nagara sebagai Kemasan Makanan yang Ramah Lingkungan, Jurnal Riset Industri Hasil Hutan, vol. 10, no. 1, pp. 35
  17. “Karakteristik Fisik, Kimia dan Organoleptik Mie Kering pada Berbagai Rasio Tepung Pisang Kepok,” AGROINTEK., vol. 1, no.13, pp. 82-88.
  18. Analisis Kandungan Pati pada Bonggol Pisang. Aceh: Universitas Syiah Kuala.
  19. “Pembuatan Plastik Biodegradable dari Limbah Bonggol Pisang Kepok dengan Plasticizer Gliserol dari Minyak Jelatah dan Komposit Kitosan dari Limbah Cangkang Bekicot (Achatina Fullica),” Integrated Lab Journal, vol. 1, no. 7, pp. 75-89, doi: 10.5281/zenodo.2656812.
  20. ”Uji Antibakteri Ekstrak Bonggol dari Beberapa Varietas Pisang terhadap Staphylococcus aureus dan Pseudomonas aeruginosa,” Sainstech Farma, vol. 2, no. 13, pp. 66-72.
  21. “High Performance of Macrofungi in The Production of Mycelium-Based Biofoams Using Sawdust Sustainable technology for waste reduction,” Journal of Cleaner Production, vol. 19, no. 234, pp. 225-232, doi: 10.1016/j.jclepro.2019.06.150.
  22. “Pengaruh Konsentrasi NaOH serta Rasio Serat Daun Nanas dan Ampas Tebu pada Pembuatan Biofoam, Jurnal Teknik Kimia, vol. 1, no. 24, pp. 1-5, doi: 10.36706/jtk.v24i1.411.
  23. “Pengaruh Penambahan Magnesium Stearat dan Jenis Protein Pada Pembuatan Biodegradable Foam dengan Metode Baking Process, Jurnal Bahan Alam Terbarukan, vol. 2, no. 4, pp. 34-39, doi: 10.15294/jbat.v4i2.4166.
  24. ” Effects Of Silylated Starch Structure On Hydrophobization And Mechanical Properties Of Thermoplastic Starch Foams Made From Potato Starch, “Jurnal Carbohydrate Polymers, vol. 1, no. 241, pp. 11627, doi: 10.1016/j.carbpol.2020.116274.
  25. “Analisis Mutu Tepung Bonggol Pisang Dari Berbagai Varietas Dan,” J. TIBBS Teknol. Ind. Boga dan Busana, vol. 9, no. 1, pp. 22–29.
  26. “Pemanfaatan Tepung Bonggol Pisang Kepok (Musa Acuminata Balbisiana) Menjadi Choco Cookies,” J. BOSAPARIS Pendidik. Kesejaht. Kel., vol. 10, no. 3, p. 195, doi: 10.23887/jjpkk.v10i3.22158.
  27. “Penggunaan Mol Bonggol Pisang (Musa Paradisiaca) sebagai Dekomposer untuk Pengomposan Tandan Kosong Kelapa Sawit (8WLOL]LQJ,” J. Chem. Inf. Model., vol. 40, no. 1, pp. 40–45.
  28. “Pembuatan Plastik Biodegradable dari Bonggol Pisang Kepok dengan Penambahan CMC (Carboxy Methyl Cellulose) dan Minyak Sereh (Lemongrass Oil) sebagai Antimikroba dan Antioksidan,” J. Environ., vol. 8, no. 2, pp. 62–69.
  29. “Uji Kerapuhan Granul Pati Bonggol Pisang Dengan Metode Granulasi Basah,” J. Pharm. UMUS, vol. 01, no. 1, pp. 12–17.
  30. “Penetapan Kadar Pati pada Bonggol Pisang Mas (Musa Paradisiaca l.) dan Bonggol Pisang Batu (Musa Balbisiana Colla) menggunakan Metode Luff Schoorl,” Sci. J. Farm. dan Kesehat., vol. 9, no. 1, p. 29, doi: 10.36434/scientia.v9i1.215.
  31. “Isolasi Pati dari Pisang Kepok dengan Menggunakan Metode Alkaline Steeping,” Widya Tek., vol. 7, no. 2, pp. 113–123, [Online]. Available: http://journal.wima.ac.id/index.php/teknik/article/view/1266/0.
  32. “Pembuatan Bioetanol Fermentasi menggunakan Pembuatan Bioetanol Hasil Hidrolisa Bonggol Pisang menggunakan Saccaromycess Cereviceae Bonggol Pisang dengan Saccaromycess Cereviceae,” J. Teknol. Kim. dan Ind., vol. 1, no. 1, pp. 124–129, [Online]. Available: http://ejournal-s1.undip.ac.id/index.php/jtkiTelp/Fax:
  33. “Cellulose fiber enhances the physical characteristics of extruded biodegradable cassava starch foams,” Ind. Crops Prod., vol. 142, no. September, p. 111810, doi: 10.1016/j.indcrop.2019.111810.
  34. Formulasi dan Karakteristik dari Bonggol Pisang Kepok (Musa paradisiaca L) Sebagai Bahan Baku Pembuatan Cangkang Kapsul yang Dikombinasikan Dengan Karagenan. Makassar. UIN Alauddin Makassar.
  35. “Karakterisasi Biodegradable Foam dari Pati Sagu Termodifikasi dengan Kitosan Sebagai Aditif,” J. Tek. Kim. dan Lingkung., vol. 3, no. 1, p. 47, doi: 10.33795/jtkl.v3i1.100.
  36. “Biodegradable Foam Tray Based on Starches Isolated from Different Peruvian Species,” Int. J. Biol. Macromol., vol. 125, no. May pp. 800–807, 2019, doi: 10.1016/j.ijbiomac.2018.12.111.
  37. “Fabrication of Biodegradable Poly (Lactic Acid)/Carbon Nanotube Nanocomposite Foams: Significant Improvement on Rheological Property and Foamability,” Int. J. Biol. Macromol., vol. 163, pp. 1175–1186, doi: 10.1016/j.ijbiomac.2020.07.094.
  38. “Systematic Study on Substituting Petroleum-Based Polyols with Soy-Based Polyol for Developing Renewable Hybrid Biofoam by Self-Catalyzing/Rising Process,” Ind. Crops Prod., vol. 77, pp. 175–179, doi: 10.1016/j.indcrop.2015.08.058.
  39. “Microstructure and Physical Properties of Thermoplastic corn Starch Foams as Influenced by Polyvinyl Alcohol and Plasticizer Contents,” Int. J. Biol. Macromol., vol. 157, pp. 359–367, doi: 10.1016/j.ijbiomac.2020.04.222.
  40. “Citric Acid as Crosslinking Agent in Starch/Xanthan Gum Hydrogels Produced by Extrusion and Thermopressing,” Lwt, vol. 125, no. July 2019, p. 108950, doi: 10.1016/j.lwt.2019.108950.
  41. “Pengaruh Konsentrasi NaOH serta Rasio Serat Daun Nanas dan Ampas Tebu pada Pembuatan Biofoam,” J. Tek. Kim., vol. 24, no. 1, pp. 1–7, doi: 10.36706/jtk.v24i1.411.
  42. “Penentuan Kodisi Proses Terbaik Pembuatan Biofoam Dari Limbah Pertanian Lokal Maluku Utara,” Semin. Nas. Sains dan Teknol. no. November, pp. 10–13, 2014.
  43. “Pemanfaatan Bagas Tebu dan Pati Sagu sebagai Sustainable Packaging Material pada Pembuatan Komposit Biofoam,” Pros. Semin. Nas. Teknol. Ind. IV.
  44. ”Pemanfaatan Bagas Tebu dan Pati Sagu sebagai Sustainable Packaging Material pada Pembuatan Komposit Biofoam.” Jurnal Rekayasa dan Perancangan Proses Teknik Kimia, ISBN : 978-602-60451 -0-2, pp.82.