Main Article Content

Abstract

Ceramics globally has been developed by various materials and methods to find suitable ceramics for specific applications. This paper discusses development of several methods in ceramic preparation such as hot-pressing, sintering, co-precipitation, and solid-state method. In 2001 up to 2019, hot-pressing method was used to manufacture ceramic B4C and SiAlCO as raw material doping by (W, Ti)C. In 2002 up to 2018 sintering method by using fly ash as raw material with an additional K2CO3, Na2CO3, and Nb2O5. In 2008,  co-precipitation method was used for CaCu3Ti4O12 (CCTO) as raw material until 2019, and then  ZrO2-Al2O3 as a newcomer ceramic material. From 2001 up to 2017,  solid-state method was used with microwave for MgTiO and 3-CaTiO with Eu and (Lu, Gd) 2O3 as a dopant. This paper provided  four methods and the materials from reported references from 2000 up to now, as guidance in producing  specific functional ceramics in the future.

Article Details

How to Cite
Harkiah, S., Rauf, N., & Tahir, D. (2022). Review of ceramic materials and recent development of preparation methods. Gravitasi, 21(2), 49-60. https://doi.org/10.22487/gravitasi.v21i2.15904

References

  1. T. Ayode Otitoju, P. Ugochukwu Okoye, G. Chen, Y. Li, M. Onyeka Okoye, and S. Li, “Advanced ceramic components: Materials, fabrication, and applications,” J. Ind. Eng. Chem., vol. 85, pp. 34–65, 2020, doi: 10.1016/j.jiec.2020.02.002.
  2. Y. Liu, H. Lv, X. Lan, J. Leng, and S. Du, “Review of electro-active shape-memory polymer composite,” Compos. Sci. Technol., vol. 69, no. 13, pp. 2064–2068, 2009, doi: 10.1016/j.compscitech.2008.08.016.
  3. N. A. N. Hisham et al., “Crystal growth and mechanical properties of porous glass-ceramics derived from waste soda-lime-silica glass and clam shells,” J. Mater. Res. Technol., vol. 9, no. 4, pp. 9295–9298, 2020, doi: 10.1016/j.jmrt.2020.06.009.
  4. Q. Song, Z. H. Zhang, Z. Y. Hu, S. P. Yin, H. Wang, and Z. W. Ma, “Microstructure and mechanical properties of super-hard B 4 C ceramic fabricated by spark plasma sintering with (Ti 3 SiC 2 +Si) as sintering aid,” Ceram. Int., vol. 45, no. 7, pp. 8790–8797, 2019, doi: 10.1016/j.ceramint.2019.01.204.
  5. S. Wang and J. Liu, “Comparison of Al2O3/Er3Al5O12/ZrO2 ceramics with eutectic composition prepared using hot-pressing sintering and melt growing,” Mater. Sci. Eng. A, vol. 774, no. January, p. 138932, 2020, doi: 10.1016/j.msea.2020.138932.
  6. J. Fischer, B. Stawarzcyk, A. Trottmann, and C. H. F. Hämmerle, “Impact of thermal misfit on shear strength of veneering ceramic/zirconia composites,” Dent. Mater., vol. 25, no. 4, pp. 419–423, 2009, doi: 10.1016/j.dental.2008.09.003.
  7. J. Xu et al., “Comparative study of Al2O3-YAG:Ce composite ceramic and single crystal YAG:Ce phosphors for high-power laser lighting,” Ceram. Int., vol. 46, no. 11, pp. 17923–17928, 2020, doi: 10.1016/j.ceramint.2020.04.101.
  8. G. A. Gogotsi, “Fracture toughness of ceramics and ceramic composites,” Ceram. Int., vol. 29, no. 7, pp. 777–784, 2003, doi: 10.1016/S0272-8842(02)00230-4.
  9. S. Marinel, D. H. Choi, R. Heuguet, D. Agrawal, and M. Lanagan, “Broadband dielectric characterization of TiO 2 ceramics sintered through microwave and conventional processes,” Ceram. Int., vol. 39, no. 1, pp. 299–306, 2013, doi: 10.1016/j.ceramint.2012.06.025.
  10. H. Birol, D. Damjanovic, and N. Setter, “Preparation and characterization of (K0.5Na0.5) NbO3 ceramics,” J. Eur. Ceram. Soc., vol. 26, no. 6, pp. 861–866, 2006, doi: 10.1016/j.jeurceramsoc.2004.11.022.
  11. I. Corni, M. P. Ryan, and A. R. Boccaccini, “Electrophoretic deposition: From traditional ceramics to nanotechnology,” J. Eur. Ceram. Soc., vol. 28, no. 7, pp. 1353–1367, 2008, doi: 10.1016/j.jeurceramsoc.2007.12.011.
  12. P. Kavouras et al., “Glass-ceramic materials from electric arc furnace dust,” J. Hazard. Mater., vol. 139, no. 3, pp. 424–429, 2007, doi: 10.1016/j.jhazmat.2006.02.043.
  13. P. V. Bijumon, P. Mohanan, and M. T. Sebastian, “High dielectric constant low loss microwave dielectric ceramics in the Ca5Nb2-xTaxTiO12 system,” Mater. Lett., vol. 57, no. 8, pp. 1380–1384, 2003, doi: 10.1016/S0167-577X(02)00991-6.
  14. C. L. Huang and M. H. Weng, “Improved high Q value of MgTiO3-CaTiO3 microwave dielectric ceramics at low sintering temperature,” Mater. Res. Bull., vol. 36, no. 15, pp. 2741–2750, 2001, doi: 10.1016/S0025-5408(01)00752-8.
  15. J. Lu, K. I. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O 12) nanocrystalline ceramics - A new generation of solid state laser and optical materials,” J. Alloys Compd., vol. 341, no. 1–2, pp. 220–225, 2002, doi: 10.1016/S0925-8388(02)00083-X.
  16. Z. Gou, J. Chang, and W. Zhai, “Preparation and characterization of novel bioactive dicalcium silicate ceramics,” J. Eur. Ceram. Soc., vol. 25, no. 9, pp. 1507–1514, 2005, doi: 10.1016/j.jeurceramsoc.2004.05.029.
  17. R. Salomão, M. O. C. V. Bôas, and V. C. Pandolfelli, “Porous alumina-spinel ceramics for high temperature applications,” Ceram. Int., vol. 37, no. 4, pp. 1393–1399, 2011, doi: 10.1016/j.ceramint.2011.01.012.
  18. T. W. Cheng and Y. S. Chen, “Characterisation of glass ceramics made from incinerator fly ash,” Ceram. Int., vol. 30, no. 3, pp. 343–349, 2004, doi: 10.1016/S0272-8842(03)00106-8.
  19. R. C. Pullar, K. Okeneme, and N. M. N. Alford, “Temperature compensated niobate microwave ceramics with the columbite structure, M2+Nb2O6,” J. Eur. Ceram. Soc., vol. 23, no. 14, pp. 2479–2483, 2003, doi: 10.1016/S0955-2219(03)00133-X.
  20. M. Wakuda, Y. Yamauchi, and S. Kanzaki, “Material response to particle impact during abrasive jet machining of alumina ceramics,” J. Mater. Process. Technol., vol. 132, no. 1–3, pp. 177–183, 2003, doi: 10.1016/S0924-0136(02)00848-8.
  21. P. F. Manicone, P. Rossi Iommetti, and L. Raffaelli, “An overview of zirconia ceramics: Basic properties and clinical applications,” J. Dent., vol. 35, no. 11, pp. 819–826, 2007, doi: 10.1016/j.jdent.2007.07.008.
  22. A. Gandhi and S. Keshri, “Microwave dielectric properties of double perovskite ceramics Ba2 Zn1-xCaxWO6 (x = 0 - 0.4),” Ceram. Int., vol. 41, no. 3, pp. 3693–3700, 2015, doi: 10.1016/j.ceramint.2014.11.041.
  23. M. S. Selim, H. Yang, Y. Li, F. Q. Wang, X. Li, and Y. Huang, “Ceramic hyperbranched alkyd/γ-Al2O3 nanorods composite as a surface coating,” Prog. Org. Coatings, vol. 120, no. September 2017, pp. 217–227, 2018, doi: 10.1016/j.porgcoat.2018.04.002.
  24. A. Tiwari and L. H. Hihara, “Nanoindentation and morphological analysis of novel green quasi-ceramic nanocoating materials,” Prog. Org. Coatings, vol. 77, no. 7, pp. 1200–1207, 2014, doi: 10.1016/j.porgcoat.2014.03.022.
  25. I. A. Kartsonakis, A. C. Balaskas, E. P. Koumoulos, C. A. Charitidis, and G. Kordas, “ORMOSIL-epoxy coatings with ceramic containers for corrosion protection of magnesium alloys ZK10,” Prog. Org. Coatings, vol. 76, no. 2–3, pp. 459–470, 2013, doi: 10.1016/j.porgcoat.2012.10.028.
  26. M. Murugan, R. Subasri, T. N. Rao, A. S. Gandhi, and B. S. Murty, “Synthesis, characterization and demonstration of self-cleaning TiO 2 coatings on glass and glazed ceramic tiles,” Prog. Org. Coatings, vol. 76, no. 12, pp. 1756–1760, 2013, doi: 10.1016/j.porgcoat.2013.05.012.
  27. X. Li et al., “Fabrication and characterizations of highly transparent Tb3Ga5O12 magneto-optical ceramics,” Opt. Mater. (Amst)., vol. 88, no. November 2018, pp. 238–243, 2019, doi: 10.1016/j.optmat.2018.11.048.
  28. U. Bayarzul and J. Temuujin, “Characterization of glass ceramics produced from natural and waste raw materials,” Solid State Phenom., vol. 271 SSP, pp. 23–27, 2018, doi: 10.4028/www.scientific.net/SSP.271.23.
  29. M. Cao et al., “Effect of Gd substitution on structure and spectroscopic properties of (Lu,Gd)2O3:Eu ceramic scintillator,” Opt. Mater. (Amst)., vol. 76, pp. 323–328, 2018, doi: 10.1016/j.optmat.2017.12.053.
  30. X. Chen et al., “Fabrication and optical properties of cerium doped Lu3Ga3Al2O12 scintillation ceramics,” Opt. Mater. (Amst)., vol. 85, no. February, pp. 121–126, 2018, doi: 10.1016/j.optmat.2018.08.048.
  31. W. Xie et al., “Fabrication and properties of Eu:Lu2O3 transparent ceramics for X-ray radiation detectors,” Opt. Mater. (Amst)., vol. 80, no. March, pp. 22–29, 2018, doi: 10.1016/j.optmat.2018.04.029.
  32. V. Puchy, P. Hvizdos, J. Dusza, F. Kovac, F. Inam, and M. J. Reece, “Wear resistance of Al2O3-CNT ceramic nanocomposites at room and high temperatures,” Ceram. Int., vol. 39, no. 5, pp. 5821–5826, 2013, doi: 10.1016/j.ceramint.2012.12.100.
  33. F. Croce, L. L. Persi, B. Scrosati, F. Serraino-Fiory, E. Plichta, and M. A. Hendrickson, “Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes,” Electrochim. Acta, vol. 46, no. 16, pp. 2457–2461, 2001, doi: 10.1016/S0013-4686(01)00458-3.
  34. D. Jianxin and L. Taichiu, “Surface integrity in electro-discharge machining, ultrasonic machining, and diamond saw cutting of ceramic composites,” Ceram. Int., vol. 26, no. 8, pp. 825–830, 2000, doi: 10.1016/S0272-8842(00)00024-9.
  35. R. Li, Y. Jia, N. Bu, J. Wu, and Q. Zhen, “Photocatalytic degradation of methyl blue using Fe2O3/TiO2 composite ceramics,” J. Alloys Compd., vol. 643, pp. 88–93, 2015, doi: 10.1016/j.jallcom.2015.03.266.
  36. C. Zollfrank, R. Kladny, H. Sieber, and P. Greil, “Biomorphous SiOC/C-ceramic composites from chemically modified wood templates,” J. Eur. Ceram. Soc., vol. 24, no. 2, pp. 479–487, 2004, doi: 10.1016/S0955-2219(03)00202-4.
  37. G. Zheng, J. Zhao, and Y. Zhou, “Friction and wear behaviors of Sialon-Si 3N 4 graded nano-composite ceramic materials in sliding wear tests and in cutting processes,” Wear, vol. 290–291, pp. 41–50, 2012, doi: 10.1016/j.wear.2012.05.020.
  38. G. Liu, F. Xiangli, W. Wei, S. Liu, and W. Jin, “Improved performance of PDMS/ceramic composite pervaporation membranes by ZSM-5 homogeneously dispersed in PDMS via a surface graft/coating approach,” Chem. Eng. J., vol. 174, no. 2–3, pp. 495–503, 2011, doi: 10.1016/j.cej.2011.06.004.
  39. J. Binner, H. Chang, and R. Higginson, “Processing of ceramic-metal interpenetrating composites,” J. Eur. Ceram. Soc., vol. 29, no. 5, pp. 837–842, 2009, doi: 10.1016/j.jeurceramsoc.2008.07.034.
  40. G. J. Zhang, M. Ando, J. F. Yang, T. Ohji, and S. Kanzaki, “Boron carbide and nitride as reactants for in situ synthesis of boride-containing ceramic composites,” J. Eur. Ceram. Soc., vol. 24, no. 2, pp. 171–178, 2004, doi: 10.1016/S0955-2219(03)00607-1.
  41. Y. Zhao, D. Chen, Y. Bi, and M. Long, “Preparation of low cost glass-ceramics from molten blast furnace slag,” Ceram. Int., vol. 38, no. 3, pp. 2495–2500, 2012, doi: 10.1016/j.ceramint.2011.11.018.
  42. N. Çalś, Ş. R. Kuşhan, F. Kara, and H. Mandal, “Functionally graded SiAlON ceramics,” J. Eur. Ceram. Soc., vol. 24, no. 12, pp. 3387–3393, 2004, doi: 10.1016/j.jeurceramsoc.2003.10.019.
  43. Y. Fang, D. Agrawal, G. Skandan, and M. Jain, “Fabrication of translucent MgO ceramics using nanopowders,” Mater. Lett., vol. 58, no. 5, pp. 551–554, 2004, doi: 10.1016/S0167-577X(03)00560-3.
  44. J. Amoroso et al., “Melt processed multiphase ceramic waste forms for nuclear waste immobilization,” J. Nucl. Mater., vol. 454, no. 1–3, pp. 12–21, 2014, doi: 10.1016/j.jnucmat.2014.07.035.
  45. M. Liu et al., “Temperature stability of dielectric properties for xBiAlO3-(1-x)BaTiO3 ceramics,” J. Eur. Ceram. Soc., vol. 35, no. 8, pp. 2303–2311, 2015, doi: 10.1016/j.jeurceramsoc.2015.02.015.
  46. M. Chen et al., “Polymorphic phase transition and enhanced piezoelectric properties in (Ba0.9Ca0.1)(Ti1-xSnx)O3 lead-free ceramics,” Mater. Lett., vol. 97, pp. 86–89, 2013, doi: 10.1016/j.matlet.2012.12.067.
  47. D. Maurya, H. Thota, K. S. Nalwa, and A. Garg, “BiFeO3 ceramics synthesized by mechanical activation assisted versus conventional solid-state-reaction process: A comparative study,” J. Alloys Compd., vol. 477, no. 1–2, pp. 780–784, 2009, doi: 10.1016/j.jallcom.2008.10.155.
  48. Y. J. Wong, J. Hassan, and M. Hashim, “Dielectric properties, impedance analysis and modulus behavior of CaTiO3 ceramic prepared by solid state reaction,” J. Alloys Compd., vol. 571, pp. 138–144, 2013, doi: 10.1016/j.jallcom.2013.03.123.
  49. J. Tong, D. Clark, M. Hoban, and R. O’Hayre, “Cost-effective solid-state reactive sintering method for high conductivity proton conducting yttrium-doped barium zirconium ceramics,” Solid State Ionics, vol. 181, no. 11–12, pp. 496–503, 2010, doi: 10.1016/j.ssi.2010.02.008.
  50. Q. Li et al., “Enhanced energy-storage performance of (1-x)(0.72Bi0.5Na0.5TiO3-0.28Bi0.2Sr0.7□0.1TiO3)-xLa ceramics,” J. Alloys Compd., vol. 775, pp. 116–123, 2019, doi: 10.1016/j.jallcom.2018.10.092.
  51. K. Waetzig and T. Hutzler, “Highest UV–vis transparency of MgAl2O4 spinel ceramics prepared by hot pressing with LiF,” J. Eur. Ceram. Soc., vol. 37, no. 5, pp. 2259–2263, 2017, doi: 10.1016/j.jeurceramsoc.2017.01.010.
  52. M. Shahedi Asl, I. Farahbakhsh, and B. Nayebi, “Characteristics of multi-walled carbon nanotube toughened ZrB2-SiC ceramic composite prepared by hot pressing,” Ceram. Int., vol. 42, no. 1, pp. 1950–1958, 2016, doi: 10.1016/j.ceramint.2015.09.165.
  53. L. L. Zhu et al., “Fabrication of transparent MgAl2O4 from commercial nanopowders by hot-pressing without sintering additive,” Mater. Lett., vol. 219, pp. 8–11, 2018, doi: 10.1016/j.matlet.2018.02.010.
  54. Z. H. Yang, Y. Zhou, D. C. Jia, and Q. C. Meng, “Microstructures and properties of SiB0.5C1.5N0.5 ceramics consolidated by mechanical alloying and hot pressing,” Mater. Sci. Eng. A, vol. 489, no. 1–2, pp. 187–192, 2008, doi: 10.1016/j.msea.2007.12.010.
  55. S. B. Li, W. B. Yu, H. X. Zhai, G. M. Song, W. G. Sloof, and S. van der Zwaag, “Mechanical properties of low temperature synthesized dense and fine-grained Cr2AlC ceramics,” J. Eur. Ceram. Soc., vol. 31, no. 1–2, pp. 217–224, 2011, doi: 10.1016/j.jeurceramsoc.2010.08.014.
  56. G. Miranda et al., “Design of Ti6Al4V-HA composites produced by hot pressing for biomedical applications,” Mater. Des., vol. 108, no. July, pp. 488–493, 2016, doi: 10.1016/j.matdes.2016.07.023.
  57. G. Zhao, C. Huang, H. Liu, B. Zou, H. Zhu, and J. Wang, “A study on in-situ synthesis of TiB2-SiC ceramic composites by reactive hot pressing,” Ceram. Int., vol. 40, no. 1 PART B, pp. 2305–2313, 2014, doi: 10.1016/j.ceramint.2013.07.152.
  58. F. Monteverde, “Ultra-high temperature HfB2-SiC ceramics consolidated by hot-pressing and spark plasma sintering,” J. Alloys Compd., vol. 428, no. 1–2, pp. 197–205, 2007, doi: 10.1016/j.jallcom.2006.01.107.
  59. J. Ma et al., “Composition, microstructure and electrical properties of K0.5Na0.5NbO3 ceramics fabricated by cold sintering assisted sintering,” J. Eur. Ceram. Soc., vol. 39, no. 4, pp. 986–993, 2019, doi: 10.1016/j.jeurceramsoc.2018.11.044.
  60. J. Ding et al., “Enhanced energy-storage properties of 0.89Bi0.5Na 0.5TiO3-0.06BaTiO3-0.05K0.5Na 0.5NbO3 lead-free anti-ferroelectric ceramics by two-step sintering method,” Mater. Lett., vol. 114, pp. 107–110, 2014, doi: 10.1016/j.matlet.2013.09.103.
  61. Z. Razavi Hesabi, M. Haghighatzadeh, M. Mazaheri, D. Galusek, and S. K. Sadrnezhaad, “Suppression of grain growth in sub-micrometer alumina via two-step sintering method,” J. Eur. Ceram. Soc., vol. 29, no. 8, pp. 1371–1377, 2009, doi: 10.1016/j.jeurceramsoc.2008.08.027.
  62. L. Li, X. Ding, and Q. Liao, “Reaction-sintering method for ultra-low loss (Mg0.95Co 0.05)TiO3 ceramics,” J. Alloys Compd., vol. 509, no. 26, pp. 7271–7276, 2011, doi: 10.1016/j.jallcom.2011.04.062.
  63. X. Li, B. Zheng, T. Odoom-Wubah, and J. Huang, “Co-precipitation synthesis and two-step sintering of YAG powders for transparent ceramics,” Ceram. Int., vol. 39, no. 7, pp. 7983–7988, 2013, doi: 10.1016/j.ceramint.2013.03.064.
  64. P. K. Rao, P. Jana, M. I. Ahmad, and P. K. Roy, “Synthesis and characterization of zirconia toughened alumina ceramics prepared by co-precipitation method,” Ceram. Int., vol. 45, no. 13, pp. 16054–16061, 2019, doi: 10.1016/j.ceramint.2019.05.121.
  65. T. Jahanbin, M. Hashim, and K. Amin Mantori, “Comparative studies on the structure and electromagnetic properties of Ni-Zn ferrites prepared via co-precipitation and conventional ceramic processing routes,” J. Magn. Magn. Mater., vol. 322, no. 18, pp. 2684–2689, 2010, doi: 10.1016/j.jmmm.2010.04.008.
  66. D. F. Li, S. X. Zhao, K. Xiong, H. Q. Bao, and C. W. Nan, “Aging improvement in Cu-containing NTC ceramics prepared by co-precipitation method,” J. Alloys Compd., vol. 582, pp. 283–288, 2014, doi: 10.1016/j.jallcom.2013.08.014.
  67. B. Barbier et al., “CaCu3Ti4O12 ceramics from co-precipitation method: Dielectric properties of pellets and thick films,” J. Eur. Ceram. Soc., vol. 29, no. 4, pp. 731–735, 2009, doi: 10.1016/j.jeurceramsoc.2008.07.042.
  68. J. Li et al., “Co-precipitation synthesis route to yttrium aluminum garnet (YAG) transparent ceramics,” J. Eur. Ceram. Soc., vol. 32, no. 11, pp. 2971–2979, 2012, doi: 10.1016/j.jeurceramsoc.2012.02.040.
  69. T. W. Cheng, T. H. Ueng, Y. S. Chen, and J. P. Chiu, “Production of glass-ceramic from incinerator fly ash,” Ceram. Int., vol. 28, no. 7, pp. 779–783, 2002, doi: 10.1016/S0272-8842(02)00043-3.
  70. F. Wang, Y. Zhao, C. Yang, N. Fan, and J. Zhu, “Effect of MoO3 on microstructure and mechanical properties of (Ti,Mo)Al/Al2O3 composites by in situ reactive hot pressing,” Ceram. Int., vol. 42, no. 1, pp. 1–8, 2016, doi: 10.1016/j.ceramint.2015.08.138.
  71. M. He, J. Jia, J. Zhao, X. Qiao, J. Du, and X. Fan, “Glass-ceramic phosphors for solid state lighting: A review,” Ceram. Int., vol. 47, no. 3, pp. 2963–2980, 2021, doi: 10.1016/j.ceramint.2020.09.227.
  72. S. R. Yan, Z. Lyu, and L. K. Foong, “Effects of SiC amount and morphology on the properties of TiB2-based composites sintered by hot-pressing,” Ceram. Int., vol. 46, no. 11, pp. 18813–18825, 2020, doi: 10.1016/j.ceramint.2020.04.199.
  73. S. K. Hubadillah et al., “Fabrications and applications of low cost ceramic membrane from kaolin: A comprehensive review,” Ceram. Int., vol. 44, no. 5, pp. 4538–4560, 2018, doi: 10.1016/j.ceramint.2017.12.215.
  74. M. A. Awotunde, A. O. Adegbenjo, B. A. Obadele, M. Okoro, B. M. Shongwe, and P. A. Olubambi, “Influence of sintering methods on the mechanical properties of aluminium nanocomposites reinforced with carbonaceous compounds: A review,” J. Mater. Res. Technol., vol. 8, no. 2, pp. 2432–2449, 2019, doi: 10.1016/j.jmrt.2019.01.026.
  75. R. Abedinzadeh, S. M. Safavi, and F. Karimzadeh, “A study of pressureless microwave sintering, microwave-assisted hot press sintering and conventional hot pressing on properties of aluminium/alumina nanocomposite,” J. Mech. Sci. Technol., vol. 30, no. 5, pp. 1967–1972, 2016, doi: 10.1007/s12206-016-0402-4.
  76. X. Liu, B. Zou, H. Xing, and C. Huang, “The preparation of ZrO2-Al2O3 composite ceramic by SLA-3D printing and sintering processing,” Ceram. Int., vol. 46, no. 1, pp. 937–944, 2020, doi: 10.1016/j.ceramint.2019.09.054.
  77. S. S. Liu, M. Li, J. M. Wu, A. N. Chen, Y. S. Shi, and C. H. Li, “Preparation of high-porosity Al2O3 ceramic foams via selective laser sintering of Al2O3 poly-hollow microspheres,” Ceram. Int., vol. 46, no. 4, pp. 4240–4247, 2020, doi: 10.1016/j.ceramint.2019.10.144.
  78. X. Q. Song et al., “Sintering behaviour and microwave dielectric properties of BaAl2−2x(ZnSi)xSi2O8 ceramics,” J. Eur. Ceram. Soc., vol. 38, no. 4, pp. 1529–1534, 2018, doi: 10.1016/j.jeurceramsoc.2017.10.053.
  79. A. K. Mishra, S. Bandyopadhyay, and D. Das, “Structural and magnetic properties of pristine and Fe-doped NiO nanoparticles synthesized by the co-precipitation method,” Mater. Res. Bull., vol. 47, no. 9, pp. 2288–2293, 2012, doi: 10.1016/j.materresbull.2012.05.046.
  80. M. A. Rahman, R. Radhakrishnan, and R. Gopalakrishnan, “Structural, optical, magnetic and antibacterial properties of Nd doped NiO nanoparticles prepared by co-precipitation method,” J. Alloys Compd., vol. 742, pp. 421–429, 2018, doi: 10.1016/j.jallcom.2018.01.298.
  81. [81] Z. B. Jiao, J. H. Luan, M. K. Miller, Y. W. Chung, and C. T. Liu, “Co-precipitation of nanoscale particles in steels with ultra-high strength for a new era,” Mater. Today, vol. 20, no. 3, pp. 142–154, 2017, doi: 10.1016/j.mattod.2016.07.002.
  82. A. Saha and G. B. Olson, “Computer-aided design of transformation toughened blast resistant naval hull steels: Part i,” J. Comput. Mater. Des., vol. 14, no. 2, pp. 177–200, 2007, doi: 10.1007/s10820-006-9031-z.
  83. D. Jayaseelan, T. Nishikawa, H. Awaji, and F. D. Gnanam, “Pressureless sintering of sol-gel derived alumina-zirconia composites,” Mater. Sci. Eng. A, vol. 256, no. 1–2, pp. 265–270, 1998, doi: 10.1016/s0921-5093(98)00801-6.
  84. H. Guo et al., “Low-cost fabrication of Li2TiO3 tritium breeding ceramic pebbles via low-temperature solid-state precursor method,” Ceram. Int., vol. 45, no. 14, pp. 17114–17119, 2019, doi: 10.1016/j.ceramint.2019.05.263.
  85. H. Liu, C. Li, H. P. Zhang, L. J. Fu, Y. P. Wu, and H. Q. Wu, “Kinetic study on LiFePO4/C nanocomposites synthesized by solid state technique,” J. Power Sources, vol. 159, no. 1 SPEC. ISS., pp. 717–720, 2006, doi: 10.1016/j.jpowsour.2005.10.098.