Main Article Content

Abstract

The highest absorption optimization occurred in the photocatalyst degradation test under UV light. The highest percentage of photocatalyst degradation was 72.14% in the ZnO/Ag 5 sample. It was adjusted according to the FESEM results for the morphology of the ZnO/Ag nanoparticles and the crystal size on XRD. The synthesis process was carried out using a two-step method in laser ablation in liquid (PLAL). The laser method supports photocatalytic performance to degrade textile dye waste. The lowest percentage of degradation was obtained in the UV-Visible t test of 12.37% as a comparison test, the Dark test was carried out at an interval of 0 and 8 hours and observed using a UV spectrometer. The degradation resistance in the dark is 7.61% on ZnO/Ag at 8 hours.

Article Details

How to Cite
Rosmilasari, Yudasari, N., & Tahir, D. (2023). ZnO-Ag Synthesis Nanoparticles: Liquid Laser Ablation for Photocatalyst Degradation Of Textile Industrial Waste Dyes. Gravitasi, 22(1), 1-8. https://doi.org/10.22487/gravitasi.v22i1.15933

References

  1. T. Ito, Y. Adachi, Y. Yamanashi, and Y. Shimada, “AC SC,” Water Res., 2016, doi: 10.1016/j.watres.2016.05.050.
  2. Y. K. Ong, F. Y. Li, S. S. B. Zhao, C. Liang, and T. Chung, “Nano fi ltration hollow fi ber membranes for textile wastewater treatment : Lab-scale and pilot-scale studies,” vol. 114, pp. 51–57, 2014, doi: 10.1016/j.ces.2014.04.007.
  3. L. Hossain, S. K. Sarker, and M. S. Khan, “Author ’ s Accepted Manuscript,” Environ. Dev., 2018, doi: 10.1016/j.envdev.2018.03.005.
  4. B. Bethi, S. H. Sonawane, B. A. Bhanvase, and S. S. Sonawane, “Chemical Engineering and Processing - Process Intensification Textile Industry Wastewater Treatment by Cavitation Combined with Fenton and Ceramic Nanofiltration Membrane,” Chem. Eng. Process.
  5. - Process Intensif., vol. 168, no. July, p. 108540, 2021, doi: 10.1016/j.cep.2021.108540.
  6. A. Das, M. K. Adak, N. Mahata, and B. Biswas, “Wastewater treatment with the advent of TiO 2 endowed photocatalysts and their reaction kinetics with scavenger effect,” J. Mol. Liq., vol. 338, no. May, p. 116479, 2021, doi: 10.1016/j.molliq.2021.116479.
  7. A. K. Al-buriahi et al., “Chemosphere Elimination of rhodamine B from textile wastewater using nanoparticle photocatalysts : A review for sustainable approaches,” Chemosphere, vol. 287, no. P2, p. 132162, 2022, doi: 10.1016/j.chemosphere.2021.132162.
  8. S. Kalaiarasan, P. Uthirakumar, D. Shin, and I. Lee, “Environmental Nanotechnology , Monitoring & Management The degradation profile of high molecular weight textile reactive dyes : A daylight induced photocatalytic activity of ZnO / carbon quantum dot photocatalyst,” Environ. Nanotechnology, Monit. Manag., vol. 15, no. December 2020, p. 100423, 2021, doi: 10.1016/j.enmm.2020.100423.
  9. Y. Iqbal et al., “Green synthesis of ZnO and Ag- doped ZnO nanoparticles using Azadirachta indica leaves: Characterization and their potential antibacterial, antidiabetic, and wound-healing activities,” Mater. Lett., vol. 305, no. February, p. 130671, 2021, doi: 10.1016/j.matlet.2021.130671.
  10. Z. Wang et al., “Silver nanoparticles decorated grassy ZnO coating for photocatalytic activity enhancement,” Mater. Sci. Semicond. Process., vol. 121, no. December 2019, p. 105354, 2021, doi: 10.1016/j.mssp.2020.105354.
  11. X. Zhu, X. Liang, P. Wang, Y. Dai, and B. Huang, “Applied Surface Science Porous Ag-ZnO microspheres as e ffi cient photocatalyst for methane and ethylene oxidation : Insight into the role of Ag particles,” Appl. Surf. Sci., vol. 456, no. May, pp. 493–500, 2018, doi: 10.1016/j.apsusc.2018.06.127.
  12. F. Heshmatpour and M. S. Abdikhani, “Ce-Ag- ZnO/Fe3O4 nanocomposites: a Novel magnetically separable photocatalyst for highly efficient photodegradation of contaminants,” Phys. B Phys. Condens. Matter, 2019, doi: 10.1016/j.physb.2019.06.005.
  13. B. Pant, M. Park, H. Kim, and S. Park, “Ag-ZnO photocatalyst anchored on carbon nano fi bers : Synthesis , characterization , and photocatalytic activities,” Synth. Met., vol. 220, pp. 533–537, 2016, doi: 10.1016/j.synthmet.2016.07.027.
  14. M. Hsu and C. Chang, “Ac ce pt,” J. Hazard. Mater., 2014, doi: 10.1016/j.jhazmat.2014.06.038.
  15. N. Belachew, M. H. Kahsay, A. Tadesse, and K. Basavaiah, “Jo ur na l P re of,” Biochem. Pharmacol., p. 104106, 2020, doi: 10.1016/j.jece.2020.104106.
  16. A. M. Mostafa, E. A. Mwafy, and A. Toghan, “ZnO nanoparticles decorated carbon nanotubes via pulsed laser ablation method for degradation of methylene blue dyes,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 627, no. July, p. 127204, 2021, doi: 10.1016/j.colsurfa.2021.127204.
  17. S. Seong et al., “Synthesis of Ag-ZnO core-shell nanoparticles with enhanced photocatalytic activity through atomic layer deposition,” Mater. Des., vol. 177, p. 107831, 2019, doi: 10.1016/j.matdes.2019.107831.
  18. N. Tarasenka et al., “Applied Surface Science Laser- assisted fabrication and modification of copper and zinc oxide nanostructures in liquids for photovoltaic applications,” Appl. Surf. Sci., vol. 554, no. March, p. 149570, 2021, doi: 10.1016/j.apsusc.2021.149570.
  19. S. S. Naik, S. J. Lee, T. Begildayeva, Y. Yu, H. Lee, and M. Y. Choi, “Pulsed laser synthesis of reduced graphene oxide supported ZnO/Au nanostructures in liquid with enhanced solar light photocatalytic activity,” Environ. Pollut., vol. 266, p. 115247, 2020, doi: 10.1016/j.envpol.2020.115247.
  20. S. J. Lee et al., “Applied Surface Science ZnO supported Au / Pd bimetallic nanocomposites for plasmon improved photocatalytic activity for methylene blue degradation under visible light irradiation,” Appl. Surf. Sci., vol. 496, no. March, p. 143665, 2019, doi: 10.1016/j.apsusc.2019.143665.
  21. K. A. Elsayed et al., “Fabrication of ZnO-Ag bimetallic nanoparticles by laser ablation for anticancer activity,” Alexandria Eng. J., 2021, doi: 10.1016/j.aej.2021.06.051.
  22. L. Durso et al., “Enhanced optical response of ZnO/Ag nanocolloids prepared by a picosecond laser,” J. Lumin., vol. 178, pp. 204–209, 2016, doi: 10.1016/j.jlumin.2016.06.002.
  23. S. Sagadevan, K. Pal, Z. Zaman, and C. M. Enamul, “Structural , dielectric and optical investigation of chemically synthesized Ag-doped ZnO nanoparticles composites,” J. Sol-Gel Sci. Technol., pp. 1–11, 2017, doi: 10.1007/s10971-017-4418-8.
  24. V. Vaiano, M. Matarangolo, J. J. Murcia, H. Rojas, J. A. Navío, and M. C. Hidalgo, “Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag,” Appl. Catal. B Environ., vol. 225, no. October 2017, pp. 197–206, 2018, doi: 10.1016/j.apcatb.2017.11.075.
  25. R. Anugrahwidya and D. Tahir, “Materials Science in Semiconductor Processing Optical and structural investigation of synthesis ZnO / Ag Nanoparticles prepared by laser ablation in liquid,” vol. 105, no. September 2019, 2020, doi: 10.1016/j.mssp.2019.104712.
  26. R. Singh and P. B. B. D. Sharma, “Synthesis , structural and optical properties of Ag doped ZnO nanoparticles with enhanced photocatalytic properties by photo degradation of organic dyes,” J. Mater. Sci. Mater. Electron., vol. 0, no. 0, p. 0, 2017, doi: 10.1007/s10854- 016-6242-2.
  27. H. Liu, H. Liu, J. Yang, H. Zhai, X. Liu, and H. Jia, “Microwave-assisted one-pot synthesis of Ag decorated fl ower-like ZnO composites photocatalysts for dye degradation and NO removal,” Ceram. Int., no. May, pp. 0–1, 2019, doi: 10.1016/j.ceramint.2019.06.279.
  28. S. Kumar, V. Singh, and A. Tanwar, “Structural , morphological , optical and photocatalytic properties of Ag-doped ZnO nanoparticles,” J. Mater. Sci. Mater. Electron., pp. 1–8, 2015, doi: 10.1007/s10854-015-4227-1.
  29. H. Koo, J. A. Lee, Y. W. Heo, J. H. Lee, H. Y. Lee, and J. J. Kim, “Effects of oxygen partial pressure on the structural and electrical properties of Al and Sb co-doped p-type ZnO thin films grown by pulsed laser deposition,” Thin Solid Films, p. 138130, 2020, doi: 10.1016/j.tsf.2020.138130.
  30. J. Kaur, K. Gupta, V. Kumar, S. Bansal, and S. Singhal, “Synergic effect of Ag decoration onto ZnO nanoparticles for the remediation of synthetic dye wastewater,” Ceram. Int., pp. 1–8, 2015, doi: 10.1016/j.ceramint.2015.10.035.
  31. J. Zhang et al., “A synergistic boost of photo-activity of ZnO for photocatalytic degradation of methylene blue by Ag decoration and Fe doping,” Mater. Lett., vol. 286, no. 3, p. 129250, 2021, doi: 10.1016/j.matlet.2020.129250.
  32. Q. Zhang et al., “PT,” Sensors Actuators B. Chem., 2017, doi: 10.1016/j.snb.2017.12.052.
  33. T. Whang, M. Hsieh, and H. Chen, “Applied Surface Science Visible-light photocatalytic degradation of methylene blue with laser-induced Ag / ZnO nanoparticles,” Appl. Surf. Sci., vol. 258, no. 7, pp. 2796– 2801, 2012, doi: 10.1016/j.apsusc.2011.10.134.
  34. M. Khiari, F. Lazar, and A. Hadjadj, “Effects of Ag Nanoparticles on Zinc Oxide Photocatalytic Performance,” pp. 1–15, 2021.
  35. M. Nie, J. Liao, H. Cai, H. Sun, Z. Xue, and P. Guo, “Photocatalytic property of silver enhanced Ag / ZnO composite catalyst,” Chem. Phys. Lett., vol. 768, no. January, p. 138394, 2021, doi: 10.1016/j.cplett.2021.138394.

DB Error: Unknown column 'Array' in 'where clause'