Main Article Content

Abstract

This study aims to determine the effect of calcination temperature variations on hydroxyapatite from cuttlefish shell waste. Extraction of calcium carbonate (CaCO3) into calcium oxide (CaO) using the calcination method with temperature variations 600C, 800C, and 1000C for 5 hours. The results showed that calcination temperature affects the synthesis of hydroxyapatite compounds. Based on FTIR characterization, the optimum calcination temperature is at 1000°C. Based on SEM analysis result, hydroxyapatite particles from cuttlefish shells appear homogeneous with an average particle diameter of 0.57 µm. EDX result shows that Ca/P ratio of hydroxyapatite from cuttlefish shell waste is 2.08. It can be concluded that the cuttlefish shell waste in this study can be used for biomedical applications, such us a bone implant material because it has a Ca/P ratio of more than 1 so it is not easily dissolved and can be accepted by the body.

Article Details

How to Cite
Nurrahmi, S., Fuadi, N., Jumardin, & Yurdanianti, F. (2023). Effect of Calcination Temperature Variation on Hydroxyapatite of Cuttlefish Shell Waste (Sepia Sp.). Gravitasi, 22(1), 31-34. https://doi.org/10.22487/gravitasi.v22i1.16312

References

  1. P. Choudhury and D. C. Agrawal, “Hydroxyapatite (HA) coatings for biomaterials,” in Nanomedicine, Elsevier, pp. 84–127. 2012.
  2. K. U. Henggu, B. Ibrahim, and P. Suptijah, “Hydroxyapatite Production from Cuttlebone as Bone Scaffold Material Preparations,” Jurnal PHPI, vol. 22, no. 1, p. 1, Apr. 2019.
  3. T. J. Webster, Nanomedicine. Woodhead Publishing Limited, 2012.
  4. Istifarah, "Sintesis dan karakterisasi komposit hidroksiapatit dari tulang sotong (sepia sp.)-kitosan untuk kandidat aplikasi bone filler, Skripsi. Universitas Airlangga : Surabaya. 2012.
  5. I. M. Jamilah, “Analisa senyawa hidroksiapatit sebagai bahan dasar sintesis tulang manusia yang berasal dari kalsium sintetis dan kalsium cangkang sotong”, skripsi. uin syarif hidayatullah jakarta, 2012.
  6. K. U. Henggu, B. Ibrahim, and P. Suptijah, “Hydroxyapatite Production from Cuttlebone as Bone Scaffold Material Preparations,” Jurnal PHPI, vol. 22, no. 1, p. 1, Apr. 2019.
  7. N. S. Wardani, A. Fadli, Irdoni. “Sintesis Hidroksiapatit dari Cangkang Telur dengan Metode Presipitasi”, JOM FTEKNIK Volume 2 No.1 Februari 2015.
  8. Aminatun, A. Supardi, Z. I. Nisa, D. Hikmawati, and Siswanto, “Synthesis of Nanohydroxyapatite from Cuttlefish Bone ( Sepia sp.) Using Milling Method,” International Journal of Biomaterials, vol. 2019, pp. 1–6, May 2019.
  9. E. Tkalčec, J. Popović, S. Orlić, S. Milardović, and H. Ivanković, “Hydrothermal synthesis and thermal evolution of carbonate-fluorhydroxyapatite scaffold from cuttlefish bones,” Materials Science and Engineering: C, vol. 42, pp. 578–586, Sep. 2014.
  10. L. Berzina-Cimdina and N. Borodajenko, “Research of Calcium Phosphates Using Fourier Transform Infrared Spectroscopy,” in Infrared Spectroscopy - Materials Science, Engineering and Technology, T. Theophanides, Ed. InTech, 2012.
  11. D. Setiawan, M. F. Basit “Sintesis dan Karakterisasi Hidrosiapatit Untuk Aplikasi Sinovektomi Radiasi.”JFN, 2012, 6 (2), 120-126.
  12. P. Oberbek et al., “Characterization and influence of hydroxyapatite nanopowders on living cells,” Beilstein J. Nanotechnol., vol. 9, pp. 3079–3094, Dec. 2018.
  13. M. Mozartha, “hidroksiapatit dan aplikasinya di bidang kedokteran gigi”, Cakradonya Dent J 2015; 7(2):807-868. 2015.
  14. M. Ansari, S. M. Naghib, F. Moztarzadeh, and A. Salati, “synthesis and characterization of hydroxyapatite- calcium hydroxide for dental composites,” 2011.
  15. M. Khoirudin, “sintesis dan karakterisasi hidroksiapatit (hap) dari kulit kerang darah (anadara granosa) dengan proses hidrotermal,” vol. 2, no. 2, 2015.

DB Error: Unknown column 'Array' in 'where clause'