
 

MODEL-CHECKS FOR HOMOSCHEDASTIC SPATIAL LINEAR REGRESSION MODEL BASED 

ON BOOTSTRAP METHOD 

 

W. Somayasa 
 

Mathematics Department of Haluoleo University, Kendari 

email: wayan.somayasa@yahoo.de 

 

Abstract 

In this paper we propose Efron residual based-bootstrap approximation methods in asymptotic model-

checks for homoschedastic spatial linear regression models. It is shown that under some regularity 

conditions given to the known regression functions the bootstrap version of the sequence of least squares 

residual partial sums processes converges in distribution to a centred Gaussian process having sample 

paths in the space of continuous functions on 1,01,0:I . Thus, Efron residual based-bootstrap is 

a consistent approximation in the usual sense. The finite sample performance of the bootstrap level  

Kolmogorov-Smirnov (KS) type test is also investigated by means of Monte Carlo simulation. 

Key words: residual based-bootstrap, asymptotic model-check, homoschedastic spatial linear regression 

models, partial sums, Gaussian process. 

 

I. Introduction 

Practically the correctness of the assumed linear models is usually evaluated by analysing the 

cumulative sums (CUSUM) of the least squares residuals. To this end a huge amount of literature is 

available, see among others MacNeill (1978) or Bischoff and Miller (2000) for one dimensional 

context. In the spatial context we refer the reader to MacNeill and Jandhyala (1993) and Xie and 

MacNeill (2006).    

To see the above mentioned problem in more detail  let us consider an experiment performed 

on an experimental region 1,01,0:I  under 
2n  experimental conditions taken from a regular 

lattice, given by  

Ink,1  :)n/k,n/( :n  , 1n .                       (1) 

Accordingly, we put together the observations carried out in n  in an nn matrix 

nnn,n

1,1kknn Y:Y  , where for nk,1  , kY  is the observation at the point 

)n/k,n/( , and 
nn

 is the space of nn  real matrices furnished with the Euclidean inner 

product )BA(trace:B,A t
nn  and the corresponding norm given by 

)AA(traceA t
nn , for 

nnB,A . It is worth noting that for our model we take I as the 

experimental region without loss of generality instead of any compact subset of 
2

. For any 

I:f , let 
nnn,n

1,1kn )n/k,n/(f:)(f  , then we have nnnnn E)(gY , 

where g  is a true but unknown real valued regression function having bounded variation on I  and 
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n,n

1,1kknn :E   is the corresponding matrix of independent and identically distributed random 

errors having mean zero and variance ),0(2
, for nk,1  . We are interested in testing 

the hypotheses 

nn0 W)(g:H   vs. nn W)(g:K , 1n ,                  (2) 

where 
nn

npn1n )(f,),(f:W   is a sub space of 
nn

 generated by )(f n1 ,  , 

)(f np .  

Under 0H , the matrix of least squares residuals is given by 

nn
nWnn

nWnn EprYpr:R  (Stapleton, 1995), where 
nW

pr  is the orthogonal projector onto 

the orthogonal complement of nW . Without loss of the generality we assume throughout this work 

that )(f n1 ,  , )(f np  is an orthogonal basis of nW . Hence, by the elementary linear algebra 

we get under 0H , 

p

1i nini

ninnni

nnnn
nn

nn

)(f),(f

)(fE),(f
E:R .                (3) 

Equivalently by the vec  operator, we have 

         )E(vecX)XX(X)E(vec)R(vec nn
t
n

1
n

t
nnnnnn ,    

where nX  is the design matrix of the model under 0H , i.e., an pn 2
matrix whose 

thk  column 

is given by the 
2n  dimensional vector ))(f(vec nk , p,,1k  . A consistent estimator for 

2
 

is given by  
pn

R
:ˆ

2

2
nn2

n

nn

in the sense 
2
nˆ  converges in probability to 

2
, as n .  

Suppose that the regression functions 1f ,  , pf  are linearly independent and squared 

integrable on I with respect to the Lebesgue measure I , then under 0H ,  MacNeill and Jandhyala 

(1993) and Xie and MacNeill (2006) showed that  

 )(B)))(R(vec(T f
D

nnnn
1  in IC , as n , 

where for I)s,t( , 

)R(

I
2

1

s,0t,0
I

t
2f fdBGdf)s,t(B:)s,t(B ,                (4)  

and )I(C:T
2n

n  is the partial sums operator defined in Park (1971). Here 

pp

p,p

1,1k

I
I

k d ff:G


 , 2B  is the standard Brownian sheet having sample pats in IC  

and 

)R(

stands for the Riemann-Stieltjes integral.  
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If nt  is a realisation of the Kolmogorov-Smirnov (KS) statistics 

)n/k,n/))(R(vec(T
n

1
max:KS nnn

nk,0
f,n 


, then a level  test of KS type based on residual 

partial sums processes for testing (2) will reject 0H  if and only if 1n ct , where 1c  is a 

constant that satisfies the equation 

    1nnn
nk,00H c)n/k,n/))(R(vec(T

n

1
maxP 


. 

Hence, by the continuous mapping theorem (Billingsley, 1968, p. 29-30), 1c  can be approximated 

by means of the distribution of )s,t(Bsup f
1s,t0

.  

As it is presented in (4), the limiting distribution of the KS type statistics under 0H  is not 

mathematically tractable, because it depends on the structure of the designs and the regression 

functions. Therefore the application of the preceding tests procedure is limited. It is the purpose of 

the preceding paper to investigate the performance of bootstrap test of (2). Although the application 

of the bootstrap appears naturally in the present context, to the knowledge of the author this topic 

has not found much attention in the literature. One purpose of the present paper is to demonstrate 

that Efron residual based-bootstrap (Shao and Tu, 1995) provides simple and reliable alternative for 

constructing asymptotic critical region of such a KS type test. This will be discussed in the Section 2. 

In Section 3 we develop Monte Carlo simulation in investigating the finite sample characteristics of 

the bootstrap test. An application of the developed method to a real data will be presented in Section 

4. Finally we close the paper in Section 5 presenting conclusion and some remarks for future 

researches.      

II. Bootstrap Approximation  

Let kr be the component of the residual matrix in the 
thk  row and 

th column computed 

based on the original observations nnY  under 0H , nk,1  .  We define an nn matrix of 

centred residuals 
n,n

1,1kknn rr:R̂  , where 
n

1
k

n

1k
2n

1 r:r


 . Further, let 
R̂

F  be the 

empirical distribution function of the components of nnR̂  putting mass 
2n

1  to rr k , for 

nk,1  , i.e., for x , 
n

1k

n

1
kx,2n

1

R̂
)rr(1:)x(F


 , where A1  is the indicator function 

of A . Efron residual based-bootstrap defines the bootstrap observations by  

*
nnn

n,n

1,1k

*
k

*
nn E)(gY:Y  , 

where 
n,n

1,1k

*
k

*
nn :E   is a random matrix whose components are a random sample from 

R̂
F  

and  

)(g n  
p

1i nnnini

ninnnnni

)(f),(f

)(fY),(f
                              (5) 
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is the ordinary least squares estimator of )(g n  under 0H . Let  
*E  and 

*var  be the expectation 

and variance operators conditioned on 
R̂

F . Then by the construction it is clear that 0)(E *
k

*
  

and 
22

n2n

p2n*
k

*2*
n )r(ˆ)(var:ˆ   which clearly converges in probability to 

2
 by the 

famous weak law of large number and Slutsky’s theorem.         

 The bootstrap analogous of the residual partial sums process is given by  

      )))(R(vec(T
ˆn

1 *
nnn*

n

)))(E(vecX)XX(X)E(vec(T
ˆn

1 *
nn

t
n

1
n

t
nn

*
nnn*

n

.         (6) 

Hence, the bootstrap version of the KS type statistics can be represented by  

  )n/k,n/))(R(vec(T
ˆn

1
max:KS *

nnn*
n

nk,0

*
f,n 


.               (7) 

Theorem 1  

Suppose that the regression functions 1f ,  , pf  are linearly independent in the space of 

squared integrable functions with respect to I , denoted by )(L I2 , continuous and have bounded 

variation on I. Then under 0H  it holds,   

     )))(R(vec(T
ˆn

1 *
nnn*

n

)(Bf

D
 in IC , as n . 

Proof 

For any rectangle I2s,1s2t,1t:A , 2t1t , 2s1s  and any real-valued function 

f  on I , the increment of f  over A is defined by  

)2s,2t(f:fI - )1s,1t(f)2s,1t(f)1s,2t(f . 

Further, for a fixed natural number n, let us define operators 
2n

n )I(C:U  and 

)I(C)I(C:On , such that for any )I(Cu  and I)s,t( , 

n,n

1,1kkIn uvec:)u(U


,                                                      (8) 

)s,t()u(UX)XX(X)u(UT:)s,t)(u(O n
t
n

1
n

t
nnnnn ,             (9) 

where  n/k,n/)1k(n/,n/)1(:I k  , nk,1  . It is obvious that nO  is linear by 

the linearity of nT . Moreover, since for every 
2na , a))a(T(U nn , it follows that nO  is 

idempotent. It can also be shown by the expression  

)s,t))(u(U(T)s,t)(u(O nnn  

p

1i nini

ninnni

))(f(vec)),(f(vec

)s,t)))((f(vec(T)u(U)),(f(vec
, 

by the definition of norm of a operator on Banach space (Conway, 1985, p. 70),  that  

p

1i

2

i
1s,t0

2

in )s,t(finff4113O . 
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Thus, nO  is uniformly bounded on )I(C . This will directly imply to the continuity of nO on )I(C , 

where .  is the supremum norm. Let us define an operator )I(C)I(C:O , such that for every 

)I(Cu  and I)s,t( , 

)R(

I

1

s,0t,0
I

t
s,0t,0 fduGdfu:)s,t)(u(O . 

The right hand side of (9) also can be written by  

)s,t()u(UT:)s,t)(u(O nnn  

)u(UXXX
n

1
X

n

1
n

t
nn

t
n2n

t
nsnt2

, 

where  
2n

nsnt is the vector whose first nsnt  components are one and the reminder is 

zero. By the definition and by the continuity of u , we have  

      u)s,t()u(UT s,0t,0
n

nn , I)s,t( .                    (10) 

Furthermore, since for p,,1i  , if  is bounded on I, then it holds component wise 

n
t

nsnt2
X

n

1

s,0t0,
Ip

s,0t,0
I1

n
df  ,,df  .                     (11) 

The convergence component wise 

1

n
t
n2
XX

n

1 1

1
p,p

1j,1iI
Iji

n
Gdff ,                   (12) 

follows from the fact that the mapping 
1BB  is continuous on the space of invertible matrices. 

Further, since for p,,1i  , if  has bounded variation and u  is continuous on I, the Riemann-

Stieltjes integral of if  with respect to u exists for all i.  Consequently, we have the following 

convergence component wise 

)u(UX n
t
n

)R(

I
p

)R(

I
1

n
duf,,duf  .                                     (13) 

Thus, from (10), (11), (12) and (13) , for every )I(Cu , it holds 0)u(O)u(O
n

n . 

Next let 1nn )u(  be any sequence in )I(C  such that 0uu
n

n , then since nO is 

bounded on )I(C , we finally have 

)u(O)u(O0 nn  

   uuO nn )u(O)u(On 0
n

. 

The last result shows that the only subset of )I(C  that satisfies the condition there exists a 

sequence 1nn )u(  that converges to u in )I(C , but the sequence 1nnn ))u(O(  does not converge 

to )u(O  is an empty set. Hence, by Theorem 5.5 in Billingsley (1968) and Theorem 4 in Park 

(1971), we get 
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             )E(vecT
ˆn

1
O)R(vecT

ˆn

1 *
nnn*

n

n
*

nnn*
n

 

)B(O 2

D
, as n . 

The proof of the theorem is complete since 0)s,t(B2 , almost surely if 0t or 0s .                                                                                                                                                                                                                                                                                                                    

Corollary 1 

By the continuous mapping theorem, under 0H  we have )s,t(BSupKS f
1s,t0

D*
f,n , as n . 

Hence, for )1,0( , the constant 1c  defined in page 4 can now be approximated by the 

constant 
*
1c  that satisfies the equation 

*
1

*
f,n

* cKS P . If nt  is a realisation of f,nKS , 

then an asymptotic level  KS type test will reject 0H  if 
*
1n ct . We will illustrate in Section 4 

the finite sample properties of this approach by means of simulation study. 

Remark 3. 

The extension of Theorem 1 to the case of 3p  dimensional unit cube and experimental 

design p21 nnn   regular lattice with ji nn , for ji  is straightforward. 

III. Simulation  

We develop Monte Carlo simulation for constructing the finite sample sizes critical region of 

the bootstrap level test of the hypotheses 

Wg:H 0  vs. 'Wg:K ,                                               (15) 

where 321 f,f,f:W  and 654321 f,f,f,f,f,f:'W ,  ,f1 2f , 3f , 4f , 5f , I:f 6 , defined 

by 1:)s,t(f1 , t:)s,t(f 2 , s:)s,t(f3 , 
2

4 t:)s,t(f , ts:)s,t(f5 , and 
2

6 s:)s,t(f . The 

simulation is developed according to the following algorithm.     

Begin Algorithm  

Step 1: Generate nn matrix of pseudo random errors nnE from a distribution having mean zero 

and variance 
2

. 

Step 2: Compute the least squares residuals by the equation  

)E(vecX)XX(X)E(vec)R(vec nn
t
n

1
n

t
nnnnnn  . 

Step 3: Generate nn matrix of bootstrap errors 
*

nnE by sampling with replacement from the 

centred residuals. 

Step 4: Compute the bootstrap residuals by the equation 

)E(vecX)XX(X)E(vec)R(vec *
nn

t
n

1
n

t
nn

*
nn

*
nn .  

Step 5: Compute 
*
n

ˆ  and 
*

f,nKS . 

Step 6: Repeat Step 1 to Step 5 M times. 

Step 7: Compute 
*
1c : sort M values of 

*
f,nKS obtained in Step 5 in ascending order, i.e.,  

)2*(
f,n

)1*(
f,n KSKS  )M*(

f,nKS , 
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  then 

Να)-(1M if  ;KS

Να)-(1M if  ;KS

c
 1)α)(1*(M

fn,

 α))(1*(M
fn,

*
1  , 

 where N  is the set of natural numbers. 

End Algorithm  

 

n 

 

M=500 

 

0.010 0.025 0.050 0.100 0.150 0.200 

 

 

30 

0df  0.965 0.893 0.844 0.776 0.746 0.717 

1df  1.183 1.119 1.057 0.994 0.954 0.928 

2df  1.381 1.287 1.168 1.094 1.047 1.013 

3df  1.327 1.240 1.150 1.092 1.026 0.970 

 

 

40 

0df  0.934 0.868 0.816 0.757 0.730 0.697 

1df  1.490 1.331 1.214 1.129 1.056 1.017 

2df  1.304 1.232 1.184 1.093 1.030 0.989 

3df  1.133 1.085 1.052 0.995 0.945 0.919 

 

 

50 

0df  0.918 0.893 0.853 0.776 0.736 0.717 

1df  1.316 1.234 1.165 1.081 1.023 0.993 

2df  1.291 1.175 1.147 1.086 1.045 1.000 

3df  1.336 1.220 1.173 1.098 1.047 1.014 

Table 1. Simulated rejection probabilities of the Kolmogorov-Smirnov bootstrap test. 

For the simulation, we generate the error variables from i.i.d. random variables having mean 

zero and variance 0.5. Four cases are considered, that is for nk,1  , 

        )5.0  ,0(N~k   and 4~ 2
k , 3  ,2  ,1 . 

The simulation results are depicted in Table 1 for the sample sizes 50 40, ,30n and 60 and level 

1%, 2.5%, 5%, %10 , 15%, and 20% with 500 replications. The entries in the row named 0df  

are simulation results for which the errors are generated from )5.0  ,0(N , whereas  those in the 

rows named df are generated from chi-square distribution having 3  ,2  ,1  degrees of freedom 

such that 0)(E k  and 5.0)var( k , for nk,1  . We note that for the simulation the 

generation of the random errors are restricted neither to a specific family of distributions nor to the 

distribution having variance 0.5 only. The variance as well as the family of the distribution may vary 

as long as they satisfy the conditions specified in Theorem 1. 

IV. Example 

As an example we consider the wheat-yield data (Mercer and Hall’s data) presented in 

Cressie (1993), p. 454-455. The data are yield of grain (in pounds) observed over a 25 x 20 lattice of 

plots having 20 rows running from east to west and 25 columns of plots running from north to south. 
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The experiment consists of giving the 500 plots the same treatment (presumably fertilizer, water, 

etc.), from which it can be identified that the data are a realization of 500 independent random 

variables. As was informed in Cressie (1993), the plots are assumed to be equally spaced with the 

dimension of each plot being 10.82 ft by 8.05 ft. Figure 2 presents the perspective plot of the data. 

Observing Figure 2, we postulate under 0H  a first order polynomial model as in Hypothesis 

(16). Since the variance is unknown, we use a consistent estimator 
2
nm

ˆ . Calculated under 0H , the 

data give 
2
nm

ˆ = 0.1898, where 

 
3nm

)(f),(f

)(fY),(f
Y

ˆ

2

mn

3

1i mnnminmi

nmimnmnnmi

mn

2
nm ,  

20k1 ,251:)20/k,25/(nm  . The functions  ,f1 2f , and 3f  are defined as in 

Section 4. After computation, we get the critical value of the KS type test 1.5919, so bootstrap 

approximation of the p-value of the test computed by simulation is given by ˆ = 0.0001. Thus it can 

be concluded that 0H  is rejected for all suitable values of .   

 

Figure 2. The perspective plot of Mercer and Hall’s data 

V. Concluding Remark 

Efron residual based-bootstrap approximation to the KS type statistics based on least squares 

residual partial sums processes of homoschedastic spatial linear regression model is consistent. In 

the forthcoming paper we shall investigate the application of Efron as well as wild bootstrap in the 

case of heteroschedastic spatial linear regression model.           

The experimental design considered so far is restricted to the regular lattice on the unit square 

I, since the prerequisite condition of  the theory is satisfied well. In practice this situation is 

sometimes not reasonable, therefore we need to develop the theory in more general setting.  
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