ISSN : 2540 - 766X

ANALISIS KESTABILAN MODEL *SEAK* PADA PENYEBARAN PENYAKIT FILARIASIS

A. Wahyudin¹, R. Ratianingsih², dan N. Nacong³

1,2,3Program Studi Matematika Jurusan Matematika FMIPA Universitas Tadulako Jalan Soekarno-Hatta Km. 09 Tondo, Palu 94118, Indonesia

¹agustiraniwahyudin26@gmail.com ²ratianingsih@yahoo.com ³nasrianacong@gmail.com

ABSTRACT

Filariasis or *elephantiasis* is a disease caused by infection of filarial worms. This research studies the spread model of elephantiasis disease that is influenced by the birth rate, the natural mortality rate, the transfer rate of susceptible exposed mosquito to the exposure due to the interaction between susceptible mosquito and infected human population, the transfer rate of exposed mosquito to the infected, the transfer rate of vulnerable human to the exposure human populations as a result of the mosquito and susceptible human intraction, the transfer rate of exposed human population to the infected human population, and the transfer rate of the infected human population to chronically human population. Filariasis disease spread model is built in form of *Susceptible - Exposed - Acute - Kronic (Seak)*. The model is a nonlinear differential equations system of dependent variables that are the vulnerable, exposed, infected human populations, and chronic and vulnerable exposed, and infected mosquito population. The model has a critical point namely $T_1 = {A_v \choose \mu_1}, 0, 0, {A_m \choose \mu_2}, 0, 0, 0$ that represents the free-disease conditions and the critical point $T_2 = (S_v^*, E_v^*, I_v^*, S_m^*, E_m^*, A_m^*, K_m^*)$ that represents an endemic condition. The critical points is analyzed using the method of linearized stability and Routh Hurwitz criteria. T_1 is the vertical point stable while T_2 is unstable. The result indicates that the free- disease condition is settled, while the endemic will be left in a long time period. It could also be interpreted that the endemic have a chance be overcome.

Keywords : Filariasis, Linearization Method, Model SEAK, Routh Hurwitz Criterion

ABSTRAK

Filariasis atau *elephantiasis* adalah penyakit yang disebabkan oleh infeksi cacing filaria. Pada penelitian ini dikaji model penyebaran penyakit kaki gajah yang dipengaruhi oleh parameter laju kelahiran, laju kematian alami, laju perpindahan populasi nyamuk rentan ke populasi nyamuk *exposed* akibat interaksi antara populasi nyamuk rentan dengan populasi manusia terinfeksi, laju perpindahan populasi nyamuk dalam masa *exposed* ke populasi nyamuk terinfeksi, laju perpindahan populasi manusia rentan ke populasi manusia dalam masa *exposed* akibat interaksi antara populasi nyamuk terinfeksi dengan populasi manusia rentan, laju perpindahan populasi manusia dalam masa *exposed* ke populasi manusia terinfeksi, dan laju perpindahan populasi manusia terinfeksi ke populasi manusia kronis. Model penyebaran penyakit filariasis dibangun dalam model *Susceptible – Exposed – Acute - Kronic (SEAK)*. Model tersebut berupa sistem persamaan diferensial tak linier dari variabel-variabel terikat yang

merepresentasikan pembagian populasi manusia atas sub populasi manusia rentan, *exposed*, terinfeksi, dan kronis dan populasi nyamuk atas sub populasi nyamuk rentan, *exposed*, dan terinfeksi. Model memiliki titik kritis $T_1 = \left(\frac{A_v}{\mu_1}, 0, 0, \frac{A_m}{\mu_2}, 0, 0, 0\right)$ yang menggambarkan kondisi bebas penyakit dan titik kritis $T_2 = (S_v^*, E_v^*, I_v^*, S_m^*, E_m^*, A_m^*, K_m^*)$ yang menggambarkan kondisi endemik. Kedua titik kritis tersebut dianalisis kestabilannya menggunakan metoda linearisasi dan kriteria Routh hurwitz, dimana T_1 adalah stabil sedangkan T_2 adalah tidak stabil. Hal ini menunjukkan bahwa kondisi bebas penyakit bersifat menetap sedangkan kondisi endemik dalam waktu yang lama akan ditinggalkan. Dapat diinterprestasikan pula bahwa kondisi endemik masih bisa diupayakan untuk diatasi.

Kata Kunci : Filariasis, Metoda Linearisasi, Model SEAK, Kriteria Routh Hurwitz

I. PENDAHULUAN

Filariasis (penyakit kaki gajah) atau juga dikenal dengan *elephantiasis* adalah penyakit menular dan menahun yang disebabkan oleh infeksi cacing *filaria* yang ditularkan melalui perantara gigitan berbagai spesies nyamuk. Terdapat tiga spesies cacing penyebab Filariasis yaitu: *Wuchereria bancrofti; Brugia malayi; Brugia timori.* Semua spesies tersebut terdapat di Indonesia, namun lebih dari 70% kasus filariasis di Indonesia disebabkan oleh *Brugia malayi.* (Depkes, 2009)

Penyakit filariasis bersifat menahun (kronis) dan jarang menimbulkan kematian pada penderitanya. Namun, bila penderita tidak mendapatkan pengobatan, penyakit ini dapat menimbulkan cacat menetap pada bagian yang mengalami pembengkakan (seperti: kaki, lengan dan alat kelamin) baik pada penderita laki-laki maupun perempuan. Berdasarkan laporan dari kabupaten/kota, jumlah kasus kronis filariasis yang dilaporkan sampai tahun 2009 sudah sebanyak 11.914 kasus. (Depkes, 2009).

Penelitian ini meninjau penyebaran penyakit filariasis dengan menambahkan sub-populasi exposed mengingat sebelum dikategorikan sebagai populasi terinfeksi, manusia yang digigit nyamuk yang mengadung filaria akan mengalami masa exposed selama 14 hari. Tahap exposed ini terjadi pada kedua sub-populasi baik manusia maupun nyamuk. Penambahan sub-populasi tersebut menjadikan model SAK direvisi menjadi model SEAK. Berdasarkan hal tersebut, penulis tertarik untuk meneliti bagaimana menganalisa revisi tersebut dalam mengkaji secara matematis penyebaran penyakit Filariasis. Dalam menentukan kestabilan model SEAK digunakan metode Routh- Hurwitz. Metode ini tidak menghitung akar-akar karakteristik secara langsung, namun memberikan kriteria kestabilan yang di identifikasi melalui koefisien persamaan karakteristik. Setelah kriteria kestabilan didapatkan maka selanjutnya akan dilakukan simulasi.

II. PROSEDUR PENELITIAN

- Memulai penelitian.
- Mengkaji Literatur.
- 3. Mengambil data dari artikel dan publikasi ilmiah.
- 4. Membangun model penyebaran penyakit Filariasis. Model dibangun berdasarkan informasiinformasi yang telah diperoleh dari literatur.

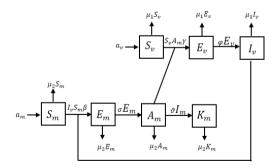
- 5. Mencari titik kesetimbangan model penyakit Filariasis.
- 6. Menganalisa kestabilan model penyebaran penyakit Filariasis.
- 7. Melakukan simulasi kestabilan dari persamaan model penyebaran penyakit Filariasis.
- 8. Menvimpulkan hasil penelitian.
- Selesai.

III. HASIL DAN PEMBAHASAN

3.1. Model Matematika Penyakit Filariasis Pada Manusia

Pada Gambar 1 memperlihatkan alur masuk dan keluarnya individu dalam populasi. Arah panah masuk menunjukkan masuknya individu ke dalam subpopulasi dan arah panah keluar menunjukkan keluarnya individu dari subpopulasi. Adapun garis lurus menunjukkan adanya interaksi antar subpopulasi.

Proses penyebaran filariasis dinyatakan sebagai suatu persamaan diferensial nonlinear yang disebut model epidemi. S_v adalah populasi nyamuk yang rentan ($Susceptible\ Vector$), E_v adalah populasi nyamuk pada masa $exposed\ (Exposed\ Vector)$, I_v adalah populasi nyamuk yang terinfeksi dan siap menginfeksi ($Infected\ Vector$), S_m adalah populasi manusia yang rentan terhadap penyakit ($Susceptible\ Human$), E_m adalah populasi manusia $exposed\ (Exposed\ Human)$, E_m adalah populasi manusia yang terinfeksi penya kit (E_m). Skema pertumbuhan, kematian, dan interaksi dari masing-masing populasi yang menggambarkan penyebaran penyakit filariasis pada manusia yang disebabkan oleh cacing filaria ditampilkan pada Gambar 1.



Gambar 1 : Alur penyebaran penyakit filariasis pada manusia

Laju kelahiran nyamuk, berpindah ke populasi nyamuk yang rentan terhadap penyakit berpindah ke populasi dalam masa exposed setelah adanya interaksi dari manusia yang dalam masa exposed dan manusia yang terinfeksi sebesar $S_vA_m\gamma$, dengan masa exposed selama 14 hari dan berpidah ke populasi nyamuk yang terinfeksi sebesar φE_v , adanya peluang interaksi nyamuk yang dalam masa exposed berinteraksi dengan manusia yang dalam masa exposed dan manusia yang kronis tanpa ada pengaruhnya sebelum berpindah ke populasi nyamuk yang terinfeksi, kemudian adanya interaksi nyamuk yang terinfeksi ke populasi manusia yang rentan sehingga populasi manusia berpindah ke populasi manusia yang dalam masa exposed, dalam waktu 8- 12 bulan dalam masa exposed populasi manusia berpindah ke populasi manusia yang terinfeksi, dan apabila populasi manusia yang terinfeksi tidak diobati akan berpindah ke populasi manusia yang terinfeksi kronis.

Dari diagram kompartemen pada Gambar 1 dibangun model matematika penyebaran penyakit filariasis, yang dapat dituliskan ke dalam sistem persamaan diferensial (SPD) sebagai berikut:

$$\begin{split} \frac{dS_v}{dt} &= a_v - \gamma S_v A_m - \mu_1 S_v \\ \frac{dE_v}{dt} &= \gamma S_v A_m - \varphi E_v - \mu_1 E_v \\ \frac{dI_v}{dt} &= \varphi E_v - \mu_1 I_v \\ \frac{dS_m}{dt} &= a_m - \mu_2 S_m - \beta S_m I_v \\ \frac{dE_m}{dt} &= \beta S_m I_v - \mu_2 E_m - \sigma E_m \\ \frac{dA_m}{dt} &= \sigma E_m - \mu_2 A_m - \vartheta A_m \\ \frac{dK_m}{dt} &= \vartheta A_m - \mu_2 K_m \end{split}$$

Dimana:

a_m	Laju Kelahiran
a_v	Laju Kelahiran
γ	Laju populasi manusia yang rentan ke populasi manusia exposed dengan
	adanya interaksi populasi nyamuk terinfeksi dengan populasi manusia
	rentan
φ	Laju populasi nyamuk dalam masa <i>exposed</i> ke populasi nyamuk terinfeksi
β	Laju populasi nyamuk yang rentan ke populasi nyamuk <i>exposed</i>
	dengan adanya interaksi populasi nyamuk rentan dengan populasi
	manusia terinfeksi

σ	Laju populasi manusia dalam masa <i>exposed</i> ke populasi manusia
	yang terinfeksi
θ	Laju populasi manusia yang terinfeksi ke populasi manusia kronis
μ	Laju kematian alami

3.2. Analisis Kestabilan dari Model

3.2.1. Titik Kritis dan Eksistensinya

Titik kritis dari sistem persamaan diferensial yang diperoleh dengan menyelesaikan persamaan-persamaan sebagai berikut:

$$\frac{dS_{v}}{dt} = \frac{A_{v}}{\mu_{1}}, \frac{dE_{v}}{dt} = 0, \frac{dI_{v}}{dt} = 0, \frac{dS_{m}}{dt} = \frac{A_{m}}{\mu_{2}}, \frac{dE_{m}}{dt} = 0, \frac{dA_{m}}{dt} = 0, \frac{dK_{m}}{dt} = 0$$

Sehingga diperoleh 2 titik kritis, yaitu $T_1=(\frac{a_v}{\mu_1},0,0,\frac{a_m}{\mu_2},0,0,0)$ dan $T_2=(S_v,E_v,I_v,S_m,E_m,I_m,K_m)$, dimana:

$$S_{_{\boldsymbol{v}}} \ = \frac{a_{_{\boldsymbol{v}}} \left(\mu_{_{\!2}} \boldsymbol{\gamma} \left(\mu_{_{\!1}} + \boldsymbol{\varphi}\right) + \beta \boldsymbol{\varphi} \boldsymbol{\gamma} \mu_{_{\!1}} a_{_{\!\boldsymbol{v}}}\right) \left(\boldsymbol{\sigma} + \mu_{_{\!2}}\right) \left(\boldsymbol{\vartheta} + \mu_{_{\!2}}\right)}{\mu_{_{\!1}} \left(\mu_{_{\!2}} \boldsymbol{\gamma} \left(\mu_{_{\!1}} + \boldsymbol{\varphi}\right) + \beta \boldsymbol{\varphi} \boldsymbol{\gamma} \mu_{_{\!1}} a_{_{\!\boldsymbol{v}}}\right) \left(\boldsymbol{\sigma} + \mu_{_{\!2}}\right) \left(\boldsymbol{\vartheta} + \mu_{_{\!2}}\right) + \gamma \left(a_{_{\!m}} \boldsymbol{\sigma} \boldsymbol{\varphi} \boldsymbol{\gamma} \mu_{_{\!1}} a_{_{\!\boldsymbol{v}}} - \mu_{_{\!1}} \mu_{_{\!2}} \left(\mu_{_{\!1}} + \boldsymbol{\varphi}\right) \left(\boldsymbol{\sigma} + \mu_{_{\!2}}\right) \left(\boldsymbol{\vartheta} + \mu_{_{\!2}}\right)\right)}$$

$$E_{v} = \frac{\gamma a_{v} \left(a_{m} \sigma \varphi \gamma \mu_{i} a_{v} - \mu_{i} \mu_{2} \left(\mu_{i} + \varphi\right) \left(\sigma + \mu_{2}\right) \left(\vartheta + \mu_{2}\right)\right)}{\mu_{i}^{2} \left(\mu_{2} \gamma \left(\mu_{i} + \varphi\right) + \beta \varphi \gamma a_{v} \mu_{i}\right) \left(\sigma + \mu_{2}\right) \left(\vartheta + \mu_{2}\right) + \varphi \mu_{i} \left(\mu_{2} \gamma \left(\mu_{i} + \varphi\right) + \beta \varphi \gamma a_{v} \mu_{i}\right) \left(\sigma + \mu_{2}\right) \left(\vartheta + \mu_{2}\right)} + \mu_{i} \gamma \left(a_{m} \sigma \varphi \gamma \mu_{i} a_{v} - \mu_{i} \mu_{2} \left(\mu_{i} + \varphi\right) \left(\sigma + \mu_{2}\right) \left(\vartheta + \mu_{2}\right)\right) + \gamma \varphi \left(a_{m} \sigma \varphi \gamma \mu_{i} a_{v} - \mu_{i} \mu_{2} \left(\mu_{i} + \varphi\right) \left(\mu_{2} + \vartheta\right)\right)\right)$$

$$I_{v} = \left(\frac{\gamma a_{v} \phi \left(a_{m} \sigma \phi \gamma \mu_{1} a_{v} - \mu_{1} \mu_{2} \left(\mu_{1} + \phi\right) \left(\sigma + \mu_{2}\right) \left(\beta + \mu_{2}\right)\right)}{\mu_{1} \left(\mu_{1}^{2} \left(\mu_{2} \gamma \left(\mu_{1} + \phi\right) + \beta \phi \gamma a_{v} \mu_{1}\right) \left(\sigma + \mu_{2}\right) \left(\beta + \mu_{2}\right) + \phi \mu_{1} \left(\mu_{2} \gamma \left(\mu_{1} + \phi\right) + \beta \phi \gamma a_{v} \mu_{1}\right) \left(\sigma + \mu_{2}\right) \left(\beta + \mu_{2}\right) + \gamma \phi \left(a_{m} \sigma \phi \gamma \mu_{1} a_{v} - \mu_{1} \mu_{2} \left(\mu_{1} + \phi\right) \left(\sigma + \mu_{2}\right) \left(\beta + \mu_{2}\right)\right)\right)}\right)$$

$$S_{m} = \begin{pmatrix} a_{m}\mu_{1} \left(\mu_{1}^{2}(\mu_{2}\gamma\left(\mu_{1}+\varphi\right)+\beta\varphi\gamma a_{v}\mu_{1}\right)\left(\sigma+\mu_{2}\right)\left(\vartheta+\mu_{2}\right)+\varphi\mu_{1}(\mu_{2}\gamma\left(\mu_{1}+\varphi\right)+\beta\varphi\gamma a_{v}\mu_{1})\left(\sigma+\mu_{2}\right)\left(\vartheta+\mu_{2}\right)\\ +\mu_{1}\gamma\left(a_{m}\sigma\varphi\gamma\mu_{1}a_{v}-\mu_{1}\mu_{2}\left(\mu_{1}+\varphi\right)\left(\sigma+\mu_{2}\right)\left(\vartheta+\mu_{2}\right)\right)+\gamma\varphi\left(a_{m}\sigma\varphi\gamma\mu_{1}a_{v}-\mu_{1}\mu_{2}\left(\mu_{1}+\varphi\right)\left(\mu_{2}+\sigma\right)\left(\mu_{2}+\vartheta\right)\right)\\ \frac{\mu_{1}\mu_{2}}{\mu_{1}\mu_{2}}\left(\mu_{1}^{2}(\mu_{2}\gamma\left(\mu_{1}+\varphi\right)+\beta\varphi\gamma\gamma a_{v}\mu_{1})\left(\sigma+\mu_{2}\right)\left(\vartheta+\mu_{2}\right)+\varphi\mu_{1}(\mu_{2}\gamma\left(\mu_{1}+\varphi\right)+\beta\varphi\gamma\gamma a_{v}\mu_{1})\left(\sigma+\mu_{2}\right)\left(\vartheta+\mu_{2}\right)\\ +\mu_{1}\gamma\left(a_{m}\sigma\varphi\gamma\mu_{1}a_{v}-\mu_{1}\mu_{2}\left(\mu_{1}+\varphi\right)\left(\sigma+\mu_{2}\right)\left(\vartheta+\mu_{2}\right)\right)+\gamma\varphi\left(a_{m}\sigma\varphi\gamma\mu_{1}a_{v}-\mu_{1}\mu_{2}\left(\mu_{1}+\varphi\right)\left(\mu_{2}+\vartheta\right)\right)\\ +\gamma\alpha_{v}\varphi\beta\left(a_{m}\sigma\varphi\gamma\eta\mu_{1}a_{v}-\mu_{1}\mu_{2}\left(\mu_{1}+\varphi\right)\left(\sigma+\mu_{2}\right)\left(\vartheta+\mu_{2}\right)\right) \end{pmatrix}$$

$$E_{\scriptscriptstyle m} = \left(\frac{a_{\scriptscriptstyle m} \gamma a_{\scriptscriptstyle s} \varphi \beta \left(a_{\scriptscriptstyle m} \sigma \varphi \gamma \mu_{\scriptscriptstyle t} a_{\scriptscriptstyle v} - \mu_{\scriptscriptstyle t} \mu_{\scriptscriptstyle 2} \left(\mu_{\scriptscriptstyle t} + \varphi \right) (\sigma + \mu_{\scriptscriptstyle 2}) (\vartheta + \mu_{\scriptscriptstyle 2}) \right)}{\mu_{\scriptscriptstyle t} \mu_{\scriptscriptstyle 2} \sigma \left(\mu_{\scriptscriptstyle t}^2 \left(\mu_{\scriptscriptstyle 2} \gamma \left(\mu_{\scriptscriptstyle t} + \varphi \right) + \beta \varphi \gamma a_{\scriptscriptstyle v} \mu_{\scriptscriptstyle 1} \right) (\sigma + \mu_{\scriptscriptstyle 2}) (\vartheta + \mu_{\scriptscriptstyle 2}) + \varphi \mu_{\scriptscriptstyle t} (\mu_{\scriptscriptstyle 2} \gamma \left(\mu_{\scriptscriptstyle t} + \varphi \right) + \beta \varphi \gamma a_{\scriptscriptstyle v} \mu_{\scriptscriptstyle 1}) (\sigma + \mu_{\scriptscriptstyle 2}) (\vartheta + \mu_{\scriptscriptstyle 2}) \right)} \right) \\ + \gamma a_{\scriptscriptstyle s} \varphi \beta \mu_{\scriptscriptstyle 2} \left(a_{\scriptscriptstyle m} \sigma \varphi \gamma \mu_{\scriptscriptstyle t} a_{\scriptscriptstyle v} - \mu_{\scriptscriptstyle t} \mu_{\scriptscriptstyle 2} \left(\mu_{\scriptscriptstyle t} + \varphi \right) (\sigma + \mu_{\scriptscriptstyle 2}) (\vartheta + \mu_{\scriptscriptstyle 2}) \right) \right)$$

$$A_{m} = \frac{\left(a_{m}\sigma\varphi\gamma\mu_{1}a_{v} - \mu_{1}\mu_{2}\left(\mu_{1} + \varphi\right)\left(\mu_{2} + \sigma\right)\left(\mu_{2} + \vartheta\right)\right)}{\left(\mu_{2}\gamma\left(\mu_{1} + \varphi\right) + \beta\varphi\gamma a_{v}\mu_{1}\right)\left(\mu_{2} + \sigma\right)\left(\mu_{2} + \vartheta\right)}$$

$$K_{m} = \frac{9(a_{m}\sigma\varphi\gamma\mu_{1}a_{v} - \mu_{1}\mu_{2}(\mu_{1} + \varphi)(\mu_{2} + \sigma)(\mu_{2} + \vartheta))}{(\mu_{2}^{2}\gamma(\mu_{1} + \varphi) + \beta\varphi\gamma a_{v}\mu_{1})(\mu_{2} + \sigma)(\mu_{2} + \vartheta)}$$

Titik kritis T_1 menggambarkan kondisi bebas penyakit, sedangkan titik kritis T_2 menggambarkan kondisi endemik. Titik kritis pertama dapat dijamin eksistensinya karena $S_v = \frac{a_v}{\mu_1}$ dan $S_m = \frac{a_m}{\mu_2}$ bernilai non negatif. Sedangkan eksistensinya titik kritis endemik penyakit filariasis akan tercapai jika bernilai non negatif. Dapat dijamin eksistensinya dengan syarat $a_m a_v < \frac{\mu_2(\mu_1 + \varphi)(\mu_2 + \sigma)(\mu_2 + \vartheta)}{\sigma \varphi \gamma}$, $a_m a_v < \frac{\mu_2(\mu_1 + \varphi)(\mu_2 + \vartheta)(\mu_2 + \vartheta)}{\sigma \varphi \mu_1 \gamma}$, $\frac{\mu_2(\mu_1 + \varphi)(\mu_2 + \vartheta)(\mu_2 + \vartheta)}{\sigma \varphi \mu_2 \gamma}$.

3.2.2. Kestabilan dari Tititk Kritis

Kestabilan dari tititk kritis T_1 dan T_2 dapat ditentukan melalui tanda negatif dari semua nilai eigen λ yang diperoleh dari matriks Jacobi. Matriks Jacobi dari sistem persamaan diferensial yang dievaluasi pada T_1 memberikan persamaan karakteristik dalam λ sebagai berikut:

$$(-\mu_1 - \lambda)(-\mu_1 - \varphi - \lambda)(-\mu_1 - \lambda)(\mu_2 - \lambda)(-\mu_2 - \sigma - \lambda)(-\mu_2 - \vartheta - \lambda(-\mu_2 - \lambda)) = 0$$

Dari persamaan karakteristik di atas diperoleh nilai eigen sebagai berikut:

$$\begin{aligned} -\mu_1 - \lambda &= 0 & \implies \lambda_1 &= -\mu_1 \\ -\mu_1 - \varphi - \lambda &= 0 & \implies \lambda_2 &= -(\mu_1 + \varphi) \\ -\mu_1 - \lambda &= 0 & \implies \lambda_3 &= -\mu_1 \\ -\mu_2 - \lambda &= 0 & \implies \lambda_4 &= -\mu_2 \\ -\mu_2 - \sigma - \lambda &= 0 & \implies \lambda_5 &= -(\mu_2 + \sigma) \\ -\mu_2 - \vartheta - \lambda &= 0 & \implies \lambda_6 &= -(\mu_2 + \vartheta) \\ -\mu_2 - \lambda &= 0 & \implies \lambda_7 &= -\mu_2 \end{aligned}$$

Mengingat semua matriks Jacobi dari sistem persamaan diffensial (SPD) yang dievaluasi pada parameter dari $\lambda_1,\dots,\lambda_6$ adalah positif maka di simpulkan bahwa T_1 adalah stabil dan T_2 memberikan persamaan karakteristik berderajat 7 dalam λ sebagai berikut:

$$(a_0\lambda^7 + a_1\lambda^6 + a_2\lambda^5 + a_3\lambda^4 + a_4\lambda^3 + a_5\lambda^2 + a_6\lambda^1 + a_7\lambda^0) = 0$$

Dimana:

```
\begin{aligned} &a_0 = -1 \\ &a_1 = a + b + c + d + e + f + g \\ &a_2 = (-b - c - e - f)a + (-c - d - e - f)b + (-d - e - f)c + (-e - f)d - ef + (-a - b - c - d - e - f)g \\ &a_3 = a \big( (c + d + e + f)b + (d + e + f)c + (e + f)d + ef \big) + b \big( (d + e + f)c + (e + f)d + ef \big) + c \big( (e + f)d + ef \big) + def + g \big( a(b + c + d + e + f) + (c + d + e + f)b + (d + e + f)c + (e + f)d + ef \big) \\ &a_4 = \big( (-cd - ce - cf - de - df - ef - dg - eg - fg)b + (-de - df - ef - dg - eg - fg)c + (-ef - eg - fg)d - efg) \big) a \\ &+ \big( (-de - df - ef - dg - eg - fg)c + (-eg - fg) - fg \big) b + \big( (((-c - e) - ce)d - cde)f \big) g \\ &a_5 = abcd(e + f) + abef(c + d) + cdef(a + b) + jkmp(-a - d) + kp(hm + j \ln) + abcg(d + e + f) \\ &+ abeg(d + f) + bcfg(a + d + e) + aceg(d + f) + cdfg(a + e) + deg(af + bc) - jkmpg \\ &a_6 = -abcdef + adjmkp - anjlkp - dhmkp + hnlkp + (-abcde - abcdf - abcef - abdef - acdef + jkmpa + jkmpd - bcdef - hkmp)g \\ &a_7 = (abcdef - adjkmp + ajnkp + dhkmp - hknlp)g \end{aligned}
```

Persamaan karakteristik tersebut didapat koefisien $a_0, a_1, a_2, a_3, a_4, a_5, a_6$ dan a_7 bernilai negatif. Koefisien- koefisien tersebut ditabelkan mengikuti kriteria *Routh Hurwitz*.

Tabel	1	٠ ٦	Tabel	Routh	Hun	witz:

λ^7	a_0	a_2	a_4	a_6
λ^6	a_1	a_3	a_5	a_7
λ5	<i>b</i> _i	b_2	b_3	0
λ^4	c ₁	c_2	c_3	0
λ^3	d_1	d_2	0	0
λ^2	e_1	e_2	0	0
λ1	f_1	0	0	0
λ^0	g_1	0	0	0

$$\begin{split} b_1 &= \frac{a_1 a_2 - a_0 a_3}{a_1} = \frac{a_1 a_2 + a_3}{a_1} \\ b_1 &= \frac{a_{n-1} a_{n-2} - a_n a_{n-3}}{a_{n-1}} \\ b_2 &= \frac{a_{n-1} a_{n-4} - a_n a_{n-5}}{a_{n-1}} \\ b_3 &= \frac{a_{n-1} a_{n-6} - a_n a_{n-7}}{a_{n-1}} \\ d_1 &= \frac{c_1 b_2 - b_1 c_2}{c_1} \end{split}$$

Titik kritis T_2 dikatakan stabil jika tidak ada perubahan tanda pada kolom pertama Tabel Routh Hurwitz. Untuk itu perlu diperiksa apakah nilai- nilai dari a_1,b_1,c_1,d_1,e_1,f_1 dan g_1 bernilai negatif. Mengingat $a_1<0$ maka, dari persamaan b_1 sampai $d_1,\ b_1<0$ dipenuhi untuk $a_1a_2+a_3$ yang bernilai positif. Syarat yang harus dipenuhi agar $\frac{a_1a_2+a_30}{a_1}>0$ adalah $X_1>Y_1$ dengan

$$\begin{split} X_1 &= \gamma^2 \left(\sigma + \varphi + \mathcal{G} + 2\mu_1 + 4\mu_2\right) AM^2 + \beta^2 \left(\sigma + \varphi + \mathcal{G} + 3\mu_1 + 3\mu_2\right) IV^2 + 2\beta\gamma \left(\sigma + \varphi + \mathcal{G} + 3\mu_1 + 4\mu_2\right) AMIV + \\ &+ \sigma^2 \varphi + \sigma^2 \mathcal{G} + 3\sigma^2 \mu_1 + 3\sigma^2 \mu_2 + \sigma \varphi^2 + 2\sigma\varphi \mathcal{G} + 6\sigma\varphi \mu_1 + 8\sigma\varphi \mu_2 + \sigma \mathcal{G}^2 + 6\sigma\mathcal{G} \mu_1 + 8\sigma\mathcal{G} \mu_2 + 9\sigma\mu_1^2 + 24\sigma\mu_1 \mu_2 + \\ &15\sigma\mu_2^2 + \varphi^2 \mathcal{G} + 2\varphi^2 \mu_1 + 4\varphi^2 \mu_2 + \varphi\mathcal{G}^2 + 6\varphi\mathcal{G} \mu_1 + 8\varphi\mathcal{G} \mu_2 + 8\varphi\mu_1^2 + 24\varphi\mu_1 \mu_2 + 16\varphi\mu_2^2 + 3\mathcal{G}^2 \mu_1 + 3\mathcal{G}^2 \mu_2 + 9\mathcal{G} \mu_1^2 + 24\mathcal{G} \mu_1 \mu_2 + 4\mathcal{G} \mu_1 \mu_2 + 4\mathcal{G$$

Syarat tersebut memberikan jaminan bagi $b_1 < 0$. Karena penyebut dari c_1 yaitu b_1 sudah dijamin negatif, maka dari persamaan x_1 , $c_1 < 0$ dipenuhi bila pembilang dari c_1 , yaitu $b_1a_3 - a_1b_2$ bernilai positif. Yaitu bila $b_1a_3 - a_1b_2 > 0$

. Mengingat b_1 dan a_3 adalah negatif, maka suku pertama persamaan y_1 adalah positif. Karena $a_1<0$ maka persamaan y_1 terpenuhi bila b_2 bernilai positif adalah nilai b_2 akan positif, jika a_4 adalah positif. Hal tersebut dipenuhi bila $X_2-Y_3>0$ atau $X_2>Y_3$ dengan $X_2=\left((-de-df-ef-dg-eg-fg)c+(-eg-fg)-fg\right)b, Y_3=Y_2+\left((c+e)+ce\right)d+cde$ Hasil tersebut memberikan c_1 yang bernilai negatif.

$$d_1 = \frac{c_1 b_2 - b_1 c_2}{c_1}$$

Karena penyebut dari d_1 yaitu c_1 yang bernilai negatif, maka dari persamaan $\frac{d_1=\frac{cb_1-bc_2}{c_1}}{c_1}$ nilai d_1 ditentukan oleh $c_1b_2-b_1c_2$. Nilai $c_1<0$ dan $b_2>0$ menjadikan suku pertamanya bernilai negatif. Selanjutnya Karena $b_1<0$, perlu diperiksa nilai c_2 , karena nilai b_3 akan positif jika $a_1a_6+a_7$ adalah negatif, sehingga hal tersebut dipenuhi bila $X_4>Y_4$ dan $X_5< Y_5$ dengan $X_4=adjmkp+hnlkp+jkmpa+jkmpd$, $X_5=abcdef+dhkmp$, $Y_4=-abcdef-anjlkp-dhmkp+(-abcde-abcdf-abcef-abdef-bcdef-hkmp)g$, $Y_5=ajnkp-hknlp-adjkmp$, hasil tersebut memberikan c_2 yang bernilai negative. Karena b_1,c_1 dan c_2 negatif sedangkan $b_2>0$ maka $c_1b_2-b_1c_2<0$ sehingga memberikan $d_1>0$ yang menunjukkan terjadinya perubahan tanda pada kolom pertama Tabel $Routh\ Hurwitz$. Hal ini memberi arti bahwa T_2 adalah tidak stabil.

3.3. Simulasi

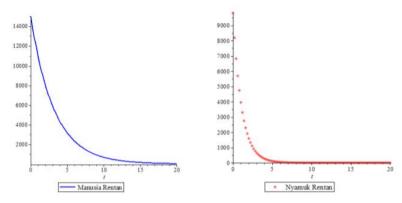
Simulasi dimaksud untuk memberikan ilustrasi kondisi tidak stabil dari titik kritis endemk. Untuk nilai-nilai parameter dengan menggunakan nilai variable dan nilai parameter, dimana S_v adalah jumlah populasi nyamuk yang rentan, E_v adalah jumlah populasi nyamuk yang exposed, I_v adalah jumlah populasi nyamuk yang terinfeksi, S_m adalah jumlah populasi manusia yang rentan, E_m adalah jumlah populasi manusia exposed, I_m adalah jumlah populasi manusia yang terinfeksi, dan K_m adalah jumlah posisi manusia yang kronis. Dari nilai parameter dan nilai variabel kita dapatkan simulasi pada Tabel 2.

Tabel 2 : Nilai awal untuk tiap sub populasi

Variabel	Deskripsi	Nilai	Sumber
$S_v(0)$	Populasi nyamuk yang rentan	9.821 jiwa	Profil Dinas Kesehatan
			2014
$E_v(0)$	Populasi nyamuk yang exposed	26,90 jiwa	Dibangkitkan
$I_v(0)$	Populasi nyamuk terinfeksi	0,073 jiwa	Dibangkitkan
$S_m(0)$	Populasi manusia yang rentan	2.876.689	Profil Dinas Kesehatan
		jiwa	2014
$E_m(0)$	Populasi manusia yang exposed	7.881,33 jiwa	$\frac{1}{life\ time}$ x Jumlah populasi
$A_m(0)$	Populasi manusia terinfeksi	21,59 jiwa	$\frac{1}{life\ time}$ x Jumlah populasi
$K_m(0)$	Populasi manusia yang kronis	0,059 jiwa	Profil Dinas Kesehatan
			2014

Tabel 3: Nilai Parameter komputasi

Parameter	Deskripsi	Nilai	Satuan	Sumber
μ_1	Laju kematian alami nyamuk	0,009	Jiwa/hari	Skripsi
				Endang Susilowati
				2013
	Laju kematian alami			Skripsi
μ_2	manusia	0,0031	Jiwa/hari	Endang Susilowati
				2013
	Laju perpindahan			Profil Dinas
γ	manusia rentan ke	0,0071	Jiwa/hari	Kesehatan 2014
	populasi manusia			
	exposed			
	Laju perpindahan populasi			
φ	nyamuk	0,0046	Jiwa/hari	Asumsi
	<i>exposed</i> ke populasi			
	nyamuk terinfeksi			
	Laju perpindahan populasi			Profil Dinas Kesehatan
θ	manusia terinfeksi ke	0,0039	Jiwa/hari	2014
	populasi manusia kronis			
	Laju perpindahan populasi			
σ	manusia	0,0025	Jiwa/hari	Asumsi
	<i>exposed</i> ke populasi			
	manusia terinfeksi			
	Laju perpindahan populasi			Profil Dinas
β	nyamuk rentan ke	0,0034	Jiwa/hari	Kesehatan 2014
	populasi nyamuk <i>exposed</i>			
				Profil Dinas Kesehatan
a_m	Laju kelahiran manusia	0,07	Jiwa/hari	2014
	-			
				Profil Dinas
a_v	Laju kelahiran nyamuk	0,136	Jiwa/hari	Kesehatan 2014

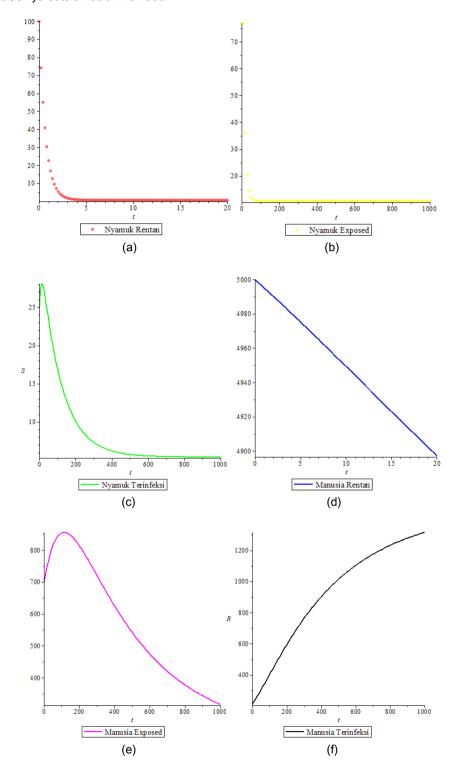


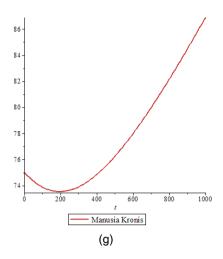
Gambar 2 : Kurva simulasi kondisi bebas penyakit. Nilai variabel S_v (0) = 9.821, E_v (0) = 0, I_v (0) = 0, S_m (0) = 15.000, E_m (0) = 0, A_m (0) = 0, K_m (0) = 0

Gambar 2 menampilkan simulasi untuk tititk kritis bebas penyakit dengan menggunakan nilai awal $S_v(0) = 9.821$, $E_v(0) = 0$, $I_v(0) = 0$, $S_m(0) = 15.000$, $E_m(0) = 0$, $A_m(0) = 0$, $K_m(0) = 0$ dengan interval waktu 20 bulan. Memperlihatkan bahwa populasi nyamuk rentan dan manusia rentan akan selalu menurun disebabkan adanya interaksi nyamuk rentan dengan manusia yang terinfeksi, dan perpindahan manusia yang rentan menuju ke manusia exposed dengan ada kontak dari nyamuk terinfeksi sehingga dalam kurun waktu 1 bulan akan mengalami penurunan dan akan konstan pada waktu tertentu. Sedangkan gambar 3 menampilkan dinamika keadaan populasi endemik dapat dilihat bagaimana penyebaran penyakit filariasis pada populasi manusia dan nyamuk. Dengan nilai awal exposed = 2.876.689 jiwa untuk manusia rentan dan exposed = 3.821 jiwa untuk nyamuk rentan, terlihat jumlah manusia rentan dan nyamuk rentan langsung turun pada bulan ke 1 dan akan bernilai tetap dalam arti sudah tidak ada populasi setelah pada bulan ke 1000 untuk populasi manusia rentan dan pada bulan ke 5 untuk populasi nyamuk rentan.

Dengan nilai awal 7.881,33 jiwa dan 26,90 jiwa untuk manusia dan nyamuk exspose, 21,59 jiwa dan 0,073 jiwa untuk manusia dan nyamuk terinfeksi, 0,059 jiwa untuk manusia kronis. Pada kelompok populasi manusia *exposed* mengalami peningkatan yang cukup signifikan. Terlihat pada gambar 4.4(b) pada bulan 1 sampai bulan ke 3 populasi manusia *exposed* mengalami peningkatan dan akan turun pada bulan ke 5. Sedangkan pada populasi nyamuk *exposed* langsung meningkat pada bulan pertama dan akan turun pada bulan ke 4. Terlihat bahwa kenaikan populasi *exposed* lebih besar dari pada populasi terinfeksi. Hal ini dikarenakan banyaknya populasi rentan yang masuk ke populasi *exposed*. Populasi manusia dan nyamuk *exposed* mengalami penurunan karena sebagian dari populasi *exposed* yang sudah siap untuk menginfeksi masuk ke populasi yang terinfeksi dan populasi manusia terinfeksi mengalami penurunan, karena sebagian dari populasi manusia yang sudah parah dan mengalami pembengkakan pada bagian tubuh tertentu akan masuk ke populasi kronis. Pada simulasi terlihat bahwa penyakit filariasis akan terus ada dalam kurun waktu lebih dari 1000 bulan

kedepan. Dalam grafik terlihat bahwa populasi akan bernilai tetap dalam arti sudah tidak ada populasinya setelah bulan ke 1000.





Gambar 3: Kurva simulasi kondisi endemik penyakit filariasis. Nilai variabel S_v (0) = 9.821, E_v (0) = 26,90, I_v (0) = 0,073, S_m (0) = 2.876.689, E_m (0) = 7.881.33, A_m (0) = 21.59, K_m (0) = 0.059.

Dari hasil simulasi disimpulkan bahwa penyakit filariasis bersifat menetap sehingga disebut sebagai endemik. Titik kritis yang menggambarkan kondisi endemik yang tidak stabil menunjukkan bahwa dalam kurun waktu yang lama kondisi endemik akan ditinggalkan. Simulasi juga memperlihatkan bahwa perilaku dinamis populasi manusia dan nyamuk memiliki kesamaan yaitu pada populasi manusia dan nyamuk rentan akan selalu menurun yang disebabkan adanya populasi manusia dan nyamuk rentan akan masuk ke populasi *exposed*. Pada populasi manusia dan nyamuk *exposed* yang awalnya meningkat, kemudian akan menurun disebabkan karena populasi manusia dan nyamuk *exposed* sudah siap untuk masuk ke populasi terinfeksi. Pada populasi manusia dan nyamuk terinfeksi yang awalnya meningkat akhirnya menurun disebabkan adanya nyamuk terinfeksi yang menginfeksi manusia rentan sedangkan manusia terinfeksi yang sudah parah akan masuk ke populasi kronis.

IV. KESIMPULAN

Penelitian ini telah menghasilkan pendekatan model matematika untuk mengetahui perilaku jangka panjang fenomena penularan penyakit filariasis pada populasi manusia. Dari hasil simulasi penyebaran penyakit filariasis yang direpresentasikan oleh model *SEAK*. Pada model matematika penularan penyakit filariasis diperoleh dua titik kritis, yaitu titik kritis yang menggambarkan kondisi bebas penyakit dan titik kritis yang menggambarkan kondisi endemik. Dalam hal ini menunjukkan bahwa kondisi bebas penyakit bersifat menetap sedangkan kondisi endemik dalam waktu yang lama akan ditinggalkan. Dapat diinterprestasikan pula bahwa kondisi endemik memiliki peluang untuk diatasi.

DAFTAR PUSTAKA

- [1]. Depkes, R.I, Analisis epidemiologi deskriptif filariasis di Indonesia, 2009, Indonesia.
- [2]. Olsder, G.J., Mathematical System Theory, Delft, 2003, The Natherland.
- [3]. Suwito, *Analisis Kestabilan Titik Kritis Model SEIRS Penyakit Scabies Pada Populasi Hewan dan Model SEIS Pada Populasi Manusia*, Universitas Tadulako, 2015, Palu.
- [4]. Campbell, S.L., & Haberman, R, *Introduction to Differensial Equitions with Dinamycal System*, Princeton University Pree, 2008, New Jersey.
- [5]. Subiono, Sistem linear dan Kontrol Optimal, Institut Teknologi Sepuluh Nopember, 2013, Surabaya