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ABSTRACT 

Low birth weight (LBW) is a condition of a baby weighing less than 2,500 grams where gestational age is not taken 

into account and the baby's weight is measured within 24 hours after birth. The level of infant development also plays 

an important role in determining the mortality rate and incidence rate of disease in infants with LBW. This study aims 

to find models and factors that influence LBW using Conway Maxwell Poisson Regression (CMPR). CMPR is an 

extension method of Poisson regression that has the advantage of overcoming violations of the equidispersion 

assumption, where data can experience overdispersion or underdispersion 

Keywords : LBW, overdispersion, Conway Maxwell Poisson Regression 
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I. INTRODUCTION 

Low Birth Weight (LBW) is a newborn baby whose weight is less than 2,500 grams without 

considering the mother's gestational age. Body weight is one of the most important health indicators 

in newborn babies, while LBW itself continues to be a major problem for public health (Usman, 2010). 

There are various problems related to LBW that require intensive care and attention to prevent 

complications that cause death in LBW babies. Apart from the role of health workers, the growth and 

development of LBW babies is further influenced by the involvement of the family, especially the 

mother and caregiver (Indasari, 2012). 

 

Babies who experience low birth weight often experience disorders in various body systems, 

including the central nervous system, respiratory, blood, heart and blood vessels, body temperature 

regulation, digestive tract, and kidneys. In addition, the impact of LBW can also affect the cognitive 

development of children aged 6 to 8 years, with a difference in Intelligence Quotient (IQ) scores of 

around 10 points lower compared to children of the same age who have normal birth weight (Ministry 

of Health, 2015). 

 

In 2021, there were 3,632,252 newborns. Of those babies, there are 111,719 affected by Low 

Birth Weight (LBW), which is about 2.5 percent of the total newborns. The case of low birth weight 

infants can be caused by various factors, including health and social factors. One way to find out is by 

modeling low birth weight based on the influencing factors (Ministry of Health, 2022). 

 

The number of cases of infants suffering from low birth weight is one of the census data. (count). 

One of the simplest regression models for analyzing the relationship between response variables in 

count data and predictor variables in discrete, continuous, categorical, or mixed data is the Poisson 

regression model (Adiatma et al., 2021). The assumptions that must be met by the Poisson regression 

model include the presence of equidispersion, where the variance is equal to the mean. However, it is 

often encountered situations where the variance is greater than the mean, a condition known as 

overdispersion. Overdispersion in Poisson regression can lead to a significant increase in standard 

error and reduce the efficiency of parameter estimation, resulting in invalid outcomes that suggest the 

explanatory variables are likely to be influential, when in fact, these explanatory variables may not 

necessarily have an effect (Putra et al., 2013). 

 

Conway Maxwell Poisson Regression is an extension of the Poisson regression model. The 

Conway Maxwell Poisson Regression model is based on the Conway Maxwell Poisson distribution. 

There are two parameters in the Conway Maxwell Poisson Regression model, which consist of the 

regression parameter and the dispersion parameter. The advantage of Conway Maxwell Poisson 

Regression is its ability to analyze various cases of overdispersion and underdispersion; this model 

has characteristics that make it methodologically interesting and useful in its applications (Afri, 2017). 

 

Several previous studies were conducted by (Riyantie 2022) on Conway Maxwell Poisson 

regression modeling to address the violation of the equidispersion assumption in Poisson regression, 



119 

using the case study of the number of people affected by Neonatal Tetanus in Indonesia in 2019. The 

research findings indicated that there are two factors that have a significant impact on the number of 

cases of Neonatal Tetanus in Indonesia in 2019. Thus, this study will use the Conway Maxwell Poisson 

Regression method to model and obtain the factors that influence cases of Low Birth Weight. 

 

II. METHODS 

2.1. Multicollinearity Test 

The multicollinearity test aims to identify the presence of correlation between predictor variables 

in a regression model. In a regression model, it is important for the model to meet the assumption that 

there is no multicollinearity problem or no correlation between predictor variables. If multicollinearity is 

detected, it can produce a very high standard error value. 

 

VIF value calculation can be done using the following formula: 

𝑉𝐼𝐹 =
1

(1 − 𝑟𝑖,𝑗
2)

                                                                                               (2.1) 

𝑉𝐼𝐹 :  Variance Inflation Factor 

𝑟𝑖,𝑗   :  Correlation coefficient between 𝑋𝑖 and 𝑌𝑗 

Test criteria:  

If the VIF value <10, it means that the regression model does not experience multicollinearity 

problems. 

 

2.2. Poisson Distribution Test 

The Poisson distribution has a condition where the average value and variance are equal or 

meet the assumption of a condition called equidispersion. According to Jannah (2018), to find out 

whether the observed data follows the Poisson distribution or not is by conducting a Kolmogorov-

Smirnov test. The hypothesis in this test is as follows: 

 

Hypothesis: 

𝐻0:𝐹(𝑋) = 𝐹0(𝑋)( the sample comes from a population with a Poisson distribution) 

𝐻1`:  𝐹(𝑋) ≠ 𝐹0(𝑋) (the sample does not comes  from a population with a Poisson distribution) 

𝛼 = 0,05 
𝐷𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 = 𝑀𝑎𝑥|𝐹0(𝑋) − 𝐹(𝑋)| 

Test criteria:  

The decision to reject H_0 if the D_calculated value>D_table or the p-value <α (0.05) means that the 

sample does not come from a population with a Poisson distribution. 

 

2.3. Equidispersion 

Equidispersion is a requirement that must be met in Poisson regression, where the mean value and 

variance value are the same. However, sometimes this assumption is violated in Poisson regression, 

for example if the variance value is greater or less than the mean value, it is called overdispersion and 

underdispersion. Overdispersion occurs when the variance of the response variable data exceeds its 
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mean value, while underdispersion occurs when the variance is less than the mean value (Darnah, 

2011). 

           𝜙 =
𝑛𝑖𝑙𝑎𝑖 𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒

𝑑𝑓
                                                                                         

𝜙    :  Dispersi 

𝑑𝑓  :  Degree of freedom 

 

If the value of ϕ>1, it means that an overdispersion condition occurs and if the value of ϕ<1, it means 

that an underdispersion condition occurs. 

 

2.4. Conway Maxwell Poisson distribution 

The Conway Maxwell Poisson distribution is a development of the Poisson distribution which 

was first introduced by Conway and Maxwell. Shmueli et al., (2010) stated that the Conway Maxwell 

Poisson distribution can overcome data that has overdispersion or underdispersion problems. The 

probability density function of the Conway Maxwell Poisson distribution is: 

 

           𝑓(𝑦; 𝜇, 𝜙) = {

𝜇𝑦

(𝑦!)𝜙

1

𝑍(𝜇;𝜙)
  ;        𝜇 > 0;𝜙 ≥ 0 

0      ;          lainnya                     

 

 

2.5. Parameter estimation in the Conway Maxwell Poisson Regression 

Parameter estimation in the Conway Maxwell Poisson Regression model uses the Maximum 

Likelihood Estimation (MLE) method. This approach is used in estimating the parameters of a model 

form whose probability function is known, with the following likelihood function form (Riyantie, 2020): 

 

           𝐿(𝛽, 𝜙; 𝑦𝑖) = ∏(𝑓(𝑦𝑖; 𝛽, 𝜙))

𝑛

𝑖=1

                                                           

           𝐿(𝛽, 𝜙; 𝑦𝑖) = ∏

[
 
 
 
 
𝑒𝑥𝑝(𝑥𝑖𝛽)𝑦𝑖𝑒𝑥𝑝(𝑥𝑖𝛽)

𝜙−1
2𝜙 (2𝜋)

𝜙−1
2 √𝜙

(𝑦𝑖!)
𝜙 𝑒𝑥𝑝 (𝜙 𝑒𝑥𝑝 (

𝑥𝑖𝛽
𝜙

))
]
 
 
 
 

                     

𝑛

𝑖=1

 

 

Here is the Conway Maxwell Poisson Regression model: 

𝜇𝑖(𝑥1𝑖, 𝑥2𝑖, … , 𝑥𝑝𝑖) = 𝑒𝑥𝑝 (
𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + ⋯+ 𝛽𝑝𝑥𝑝𝑖

𝜙
) −

𝜙 − 1

2𝜙
 

                            = 𝑒𝑥𝑝 (
𝑥𝑖𝛽

𝜙
) −

𝜙 − 1

2𝜙
 

 

2.6. Testing the Conway Maxwell Poisson Regression Model Parameters 

2.6.1. Simultaneous Test 

Simultaneous test aims to determine simultaneously or simultaneously the influence of 

predictor variables on response variables. The hypothesis in this test is as follows: Hypothesis: 

𝐻0: 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑘 = 0 (predictor variables do not have a simultaneous effect on the 

response variable) 
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𝐻1 :  𝛽𝑗 ≠ 0, 𝑗 = 1,2, … , 𝑝 + 𝑟 (there is at least one predictor variable that has a simultaneous 

influence on the response variable) 

Taraf signifikan 𝛼 = 0,05 

Statistik uji: 

𝐺 = −2 ln (
𝐿(�̂�)

𝐿(Ω̂)
) = 2 (ln (𝐿(Ω̂) − 𝐿(�̂�))) 

dimana: 

𝐿(�̂�) : Maximum likelihood value for a simple model without involving predictor variables 

𝐿(Ω̂) : The maximum likelihood value for the full model involving predictor variables 

Test criteria:  

The decision to reject 𝐻0 if 𝐺 > 𝑥𝛼,𝑛−𝑘−1
2  or the p-value <α (0.05) which means that there is at 

least one predictor variable that has a simultaneous influence on the response variable. 

 

2.6.2. Parsial Test 

Partial test is used in testing model parameters with the aim of assessing the influence 

produced by the predictor variable on the response variable individually. The Wald test 

functions as a test statistic in a partial test. The hypothesis in this test is as follows: 

Hipotesis: 
 

𝐻0 :  𝛽𝑗 = 0 (predictor variables have no influence on the response variable) 

𝐻1 :  𝛽𝑗 ≠ 0, 𝑗 = 1,2, . . . , 𝑝 (predictor variables have influence on the response variable) 

Taraf signifikan 𝛼 = 0,05 

Statistik Uji : 

𝑊 =
�̂�𝑗

𝑠𝑒(�̂�𝑗)
             

�̂�𝑗         :  Estimated values for parameters�̂�𝑗 

𝑠𝑒(�̂�𝑗)  :  standard error estimate �̂�𝑗 

 

2.7. Data 

The data used in this research is secondary data regarding the number of stunted toddlers and 

the factors influencing low birth weight cases. This study utilizes secondary data obtained from the 

Indonesian Health Profile in 2022. The variables that will be used in this research are the response 

variable (Y) and the predictor variable (X), presented in the Table 1. 

 

Table 1 : Types of Research Variables 

Variable Variable Name Unit Operational Definition 

𝑌 Low Birth Weight Babies Person Babies born weighing less than 2500 

grams. 
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𝑋1 Coverage of Healthcare 

Services for Pregnant 

Women K1 

Percent  

(%) 

The percentage of pregnant women 

who have received their first 

antenatal care from medical 

personnel. 

𝑋2 Coverage of Healthcare 

Services for Pregnant 

Women K4 

Percent  

(%) 

The percentage of pregnant women 

who have received antenatal care 

services according to the standards, 

at least four times as recommended 

in each trimester. 

𝑋3 Administration of Iron 

Supplements to Pregnant 

Women 

Person The number of pregnant women 

receiving Iron Supplement Tablets 

should be at least 90 tablets. 

𝑋4 Pregnant Women who are HIV 

Positive 

Person The number of pregnant women 

infected with HIV is at high risk of 

transmitting the virus to the unborn 

baby. 

𝑋5 Coverage of Pregnant Women 

with Chronic Energy Deficiency 

Receiving Supplementary 

Food 

Percent  

(%) 

The percentage of pregnant women 

who receive Supplementary Food 

Provision to increase their nutritional 

intake. 

𝑋6 Pregnant Woman with 

Reactive HBsAg 

Person The number of pregnant women who 

infected with HBsAg (Hepatitis B 

Surface Antigen ) 

 

Data analysis in this study uses the Conway Maxwell Poisson Regression method, assisted by 

RStudio software. There are several stages of data analysis used in this study, namely: 

1. Collecting data.   

2. Calculating descriptive statistics.   

3. Conducting multicollinearity testing by examining the Variance Inflation Factor (VIF) values.   

4. Determining the Poisson regression model.   

5. Performing Poisson distribution testing using the Kolmogorov-Smirnov test.   

6. Conducting the equidispersion assumption test by checking the dispersion values to determine 

whether the data is experiencing overdispersion or underdispersion.   

7. Determining the Conway-Maxwell-Poisson Regression model.   

8. Conducting parameter significance testing. The purpose of parameter significance testing is to 

evaluate the significance of variables using simultaneous tests (likelihood ratio test) and partial 

tests (Wald test).   

9. Conclusion.   

Interpretation of the obtained model. 
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III. RESULTS AND DISSCUSSION  

3.1. Multicollinearity test 

In regression analysis, it is important to perform a multicollinearity test to determine whether 

there is a correlation between the predictor variables. To evaluate the correlation between predictor 

variables, the necessary step is to examine the VIF values listed in Table 2. 

 

Table 2 : Variance Inflation Factor (VIF) Value 

Variable VIF 

𝑋1 1,11 

𝑋2 1,23 

𝑋3 3,83 

𝑋4 3,06 

𝑋5 1,06 

𝑋6 3,99 

 

Based on Table 2, it can be seen that the VIF values of all predictor variables are less than 10, 

which means that no multicollinearity issues were found in the data, or there is no correlation between 

each predictor variable. Therefore, the assumption of non-multicollinearity among the predictor 

variables has been met. 

 

3.2. Distribusi Poisson Test 

To determine whether the data being studied follows a Poisson distribution or not, a 

Kolmogorov-Smirnov test was conducted. The hypotheses used and the results of the analysis with 

the Kolmogorov-Smirnov test are presented in the Table 3. 

 

Table 3 : Kolmogorov-Smirnov Test 

p-value Decision Information 

0.3265 Accepted 𝐻0 Poisson Distribution Sample 

 

Based on Table 3, it can be concluded that the p-value for the Kolmogorov-Smirnov test result 

is 0.3265, which means the p-value (0.3265) > 𝛼 (0.05), so we 𝐻0. Thus, it means that the sample 

comes from a population that is distributed according to a Poisson distribution. 

 

3.3. Equidispersion Assumption Test 

In the case of Poisson regression, there is often a violation of the equidispersion assumption , 

to find out whether the case is overdispersion or underdispersion can be detected by calculating the 

estimated dispersion value. The following are the results of the dispersion estimate listed in Table 4. 
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Table 4 : Estimated Dispersion Values 

Deviance df Dispersion Estimation (𝜙) 

18436.33 27 682,8271 

 

Table 4, it can be seen that the estimated dispersion value obtained from the deviance value 

divided by the degrees of freedom is 682.8271 where the estimated dispersion value is more than 1, 

this means that the data is overdispersed, which indicates that the response variable has a greater 

variance value than its average value. To handle violations of these assumptions, one alternative is to 

use the Conway Maxwell Poisson Regression model. 

 

3.4. Conway Maxwell Poisson Regression Model 

Conway Maxwell Poisson Regression model is a form of statistical model that is implemented 

in analyzing the relationship between variables that experience overdispersion in the data. Parameter 

estimation results �̂� and �̂� using the Newton Raphson approach with R Studio software . To obtain the 

CMP model, first find the estimated value of the parameter 𝛽 listed in Table 5.  

 

Table 5 : Conway Maxwell Poisson Regression Parameter Estimation Values 

Parameters Estimate 

𝛽0 2.452 × 103 

𝛽1 −7.638 × 100 

𝛽2 −1.361 × 101 

𝛽3 1,438 × 10−2 

𝛽4 −9.671 × 100 

𝛽5 −2.721 × 100 

𝛽6 2.086 × 100 

 

Based on Table 5, it can be seen that the Conway Maxwell Poisson Regression model formed is as 

follows 

�̂� = 𝑒𝑥𝑝 (
𝑥𝑖𝛽

𝜙
) −

𝜙 − 1

2𝜙
 

= 𝑒𝑥𝑝 (
2452 − 7,638𝑥1 − 13,61𝑥2 + 0,014𝑥3 − 9,671𝑥4 − 2,721𝑥5 + 2,086𝑥6

682,8271
) −

(682,8271 − 1)

2(682,8271)
 

�̂� = 𝑒𝑥𝑝(3,59095 − 0,011186𝑥1 − 0,019932𝑥2 + 0,000020503𝑥3 − 0,0141632𝑥4 − 0,003985𝑥5

+ 0,003055𝑥6) − 0,499268 

 

3.5. Parameter Testing of the Conway Maxwell Poisson Regression Model 

3.5.1. Simultaneous Test 

Simultaneous testing is conducted with the aim of identifying the influence of predictor 

variables on response variables simultaneously or simultaneously. To conduct this test, a ratio 

likelihood test method is required, the results of which are listed in Table 6. 
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Hypothesis : 

H0 ∶  𝛽j = 0, j = 1,2, … , p (predictor variables do not have simultaneous influence on the 

response variable) 

H1 ∶  𝛽j ≠ 0, j = 1,2, … , p (at least there is one predictor variable that has a simultaneous 

influence on the response variable 

 

Table 6 : Results of Likelihood Ratio Test 

Conway Maxwell Poisson Regression Criteria Value 

ln 𝐿(Ω̂) −9110 

ln 𝐿(�̂�) −69257 

 

Based on Table 6, we obtain: 

G = -2 ln(
𝐿(�̂�)

𝐿(Ω̂)
) 

   = 2(ln 𝐿(Ω̂) −  ln 𝐿(�̂�)) 

   = 2(−9110 − (−69257)) 

   = 120293  

 

Based on the results of the likelihood ratio test, a value of 𝐺 = 120293 was obtained, 

while the value of 𝜒0,05;34−6−1
2 = 40.1133 means the value of 𝐺 > 𝜒0,05;34−6−1

2  and for p-value = 

2.2 × 10−16 < 𝛼 (0.05) then reject 𝐻0. With a significance level of (0.05), it can be concluded 

that there is at least one predictor variable that has a simultaneous influence on the response 

variable. 

 

3.5.2. Partial Test 

The partial test aims to analyze the influence of each predictor variable individually on 

the response variable. The test performed is the Wald test which can be seen as follows: 

Hypothesis: 

H0 ∶  𝛽j = 0, j = 1,2, … , p ( the predictor variable has no influence on the response variable) 

H1 ∶  𝛽j ≠ 0, j = 1,2, … , p( the predictor variable has an influence on the response variable) 

W0 = (
�̂�0

𝑠𝑒(�̂�0)
)
2

= (
2452

38,21
)
2

= 4118 ,01 

W1 = (
�̂�1

𝑠𝑒(�̂�1)
)
2

= (
−7,638

0,1465
)
2

= 2718 ,22 

W2 = (
�̂�2

𝑠𝑒(�̂�2)
)
2

= (
−13,61

0,3191
)
2

= 1819,125 

W3 = (
�̂�3

𝑠𝑒(�̂�3)
)
2

= (
0,014

0,000212
)
2

= 4360 ,98 

W4 = (
�̂�4

𝑠𝑒(�̂�4)
)
2

= (
−9,671

0,08543
)
2

= 12815,099 

W5 = (
�̂�5

𝑠𝑒(�̂�5)
)
2

= (
−2,721

0,07636
)
2

= 1269,771 

W6 = (
�̂�6

𝑠𝑒(�̂�6)
)
2

= (
2,086

0,01535
)
2

= 18467 ,66 
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Thus, the results obtained are listed in Table 7. 

 

Table 7 : Wald Test Results 

Parameter Wald Table 𝜒2 Decision 

𝛽0 4118.01 3.841 Reject 𝐻0 

𝛽1 2718.22 3.841 Reject 𝐻0 

𝛽2 1819.125 3.841 Reject 𝐻0 

𝛽3 4360.98 3.841 Reject 𝐻0 

𝛽4 12815.099 3.841 Reject 𝐻0 

𝛽5 1269.771 3.841 Reject 𝐻0 

𝛽6 18467.66 3.841 Reject 𝐻0 

 

Based on Table 7, it can be observed with a significance level of 0.05, it can be 

concluded that there are 6 variables that have a significant influence on cases of low birth 

weight babies, coverage of healthcare services for pregnant women K1 (𝑋1), coverage of 

healthcare services for pregnant women K4 (𝑋2), administration of iron supplements to 

pregnant women (𝑋3),  pregnant women who are hiv positive (𝑋4), coverage of pregnant 

women with chronic energy deficiency receiving supplementary food (𝑋5) and pregnant woman 

with reactive HBsAg (𝑋6). 

 

3.6. Conway Maxwell Poisson Regression Model 

After obtaining the results of the partial test, the Conway Maxwell Poisson Regression model 

was obtained with the parameters that influence the model, namely β
0
, β

1
, β

2
, β

3
, β

4
, β

5
 and β

6
 as 

follows: 

 

�̂� = 𝑒𝑥𝑝(3,59095 − 0,011186𝑥1 − 0,019932𝑥2 + 0,000020503𝑥3 − 0,0141632𝑥4 − 0,003985𝑥5

+ 0,003055𝑥6) − 0,499268 
 

With a significant variable, namely coverage of healthcare services for pregnant women K1 

(𝑋1), coverage of healthcare services for pregnant women K4 (𝑋2), administration of iron supplements 

to pregnant women (𝑋3),  pregnant women who are hiv positive (𝑋4), coverage of pregnant women 

with chronic energy deficiency receiving supplementary food (𝑋5) and pregnant woman with reactive 

HBsAg (𝑋6) 

 

Based on the model above, it can be concluded that:  

1. Estimated values for parameters β
0
 namely 3.59095 which means that the average number of 

low birth weight babies will remain at exp (3.59095) – 0.499268 = 35.76925 without being 

influenced by other variables. 

2. Estimated values for parameters β
1
 namely - 0.011186 which means that for every 1 percent 

increase in coverage of maternal health services K1, it will be inversely proportional to the 

average number of babies experiencing LBW of exp (- 0.011186) – 0.499268 = 0.489608. 
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3. Estimated values for parameters β
2
 namely - 0.019932 which means that for every 1 percent 

increase in coverage of K2 maternal health services, it will be inversely proportional to the 

average number of babies experiencing LBW of exp(- 0.019932) – 0.499268 = 0.480997. 

4. The estimated value for the parameter β
3 

is 0.000020503, which means that for every 1 

additional amount of iron tablets given to pregnant women, it will be proportional to the increase 

in the average number of babies experiencing LBW of exp(0.000020503) – 0.499268 = 

0.500753. 

5. Estimated values for parameters β
4
 namely - 0.0141632 which means that for every additional 

1 number of pregnant women who are HIV positive, it will be inversely proportional to the 

average number of babies who experience LBW of exp(- 0.0141632) – 0.499268 = 0.486669. 

6. Estimated values for parameters β
5
 namely - 0.003985 which means that for every 1 percent 

increase in coverage of pregnant women with chronic energy deficiency receiving PMT, it will 

be inversely proportional to the average number of babies experiencing LBW of exp(- 0.003985) 

– 0.499268 = 0.496755. 

7. Estimated values for parameters β
6
 namely 0.003055 which means that for every 1 additional 

number of HBsAg reactive pregnant women, it will be proportional to the increase in the average 

number of babies experiencing LBW of exp(0.003055) – 0.499268 = 0.503792. 

 

IV. CONCLUSION 

The Conway Maxwell Poisson Regression model with parameters that influence the model, 

namely β
0
, β

1
, β

2
, β

3
, β

4
, β

5
and β

6
 as follows: 

 

�̂� = 𝑒𝑥𝑝(3,59095 − 0,011186𝑥1 − 0,019932𝑥2 + 0,000020503𝑥3 − 0,0141632𝑥4 − 0,003985𝑥5

+ 0,003055𝑥6) − 0,499268 
 

With a significant variable, namely coverage of healthcare services for pregnant women K1 

(𝑋1), coverage of healthcare services for pregnant women K4 (𝑋2), administration of iron supplements 

to pregnant women (𝑋3),  pregnant women who are hiv positive (𝑋4), coverage of pregnant women 

with chronic energy deficiency receiving supplementary food (𝑋5) and pregnant woman with reactive 

HBsAg (𝑋6). 
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