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ABSTRACT

Stunting remains a significant public health issue in Blitar Regency, Indonesia, particularly in rural areas where
chronic malnutrition and inadequate access to healthcare services persist as major challenges. This study aims to
explore the spatial and temporal factors influencing stunting using the Geographically Weighted Panel Regression
(GWPR) method. By integrating cross-sectional and time-series data from 2021 to 2023, the study evaluates
various factors, including the stunting prevalence rate and independent variables such as maternal education level,
per capita income, the number of postpartum mothers receiving Vitamin A supplements, immunization coverage,
and the availability of healthcare personnel. The findings reveal that stunting prevalence is significantly influenced
by location-specific variables, with healthcare access and nutrition being dominant factors in rural areas, while
economic conditions exert a greater influence in urban areas. The GWPR model provides deeper insights into
spatial heterogeneity and offers valuable guidance for designing targeted and region-specific policies to reduce
stunting rates in Blitar Regency. The results indicate that the R-Square value of the GWPR model is 0.9123,
meaning that 91.23% of the stunting prevalence in Blitar Regency can be explained by the independent variables
in this study.
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I INTRODUCTION

Stunting is a significant public health issue in Indonesia, especially in rural areas like Blitar
Regency. Stunting, or short stature, refers to a condition where children are shorter than the standard
height for their age due to chronic malnutrition and repeated infections during growth periods (Beal et
al., 2018). Data from Indonesia's Ministry of Health shows that the prevalence of stunting in Blitar
Regency remains high. This issue is complex and multifaceted, requiring innovative and holistic

approaches to understand and address it (Budiastutik & Nugraheni, 2018).

Various factors contribute to the high stunting rates, including socioeconomic conditions,
parenting practices, access to healthcare services, and the availability and quality of food (Prendergast
& Humphrey, 2014). Each of these factors may vary spatially across different areas within Blitar
Regency. Therefore, an analysis that considers spatial variation is crucial for a more comprehensive
understanding of the distribution and determinants of stunting (Sipahutar et al., 2022). In this context,
location-based statistical modeling, such as Geographically Weighted Regression (GWR), offers a
more accurate approach to analyzing data with spatial dimensions (lriany et al., 2023) (Sulekan &
Jamaludin, 2020).

GWR is a statistical method that accounts for geographic variation by assigning greater
weight to data that are geographically closer (Wheeler, 2021). The innovation of this study lies in the
use of GWR to more accurately identify the factors influencing stunting in various locations, as
compared to conventional regression models that assume uniform relationships between variables
across the entire study area (Anismuslim et al., 2023). This approach provides new insights into the
local variations of stunting determinants, which in turn can assist in designing more effective and

targeted interventions.

This research also introduces the use of panel data, which combines cross-sectional and time
series data, to capture both the temporal dynamics and spatial variations of stunting. The innovation
in using panel data enables a deeper analysis of changes in the determinants of stunting over time
and how the interaction between these factors evolves across different locations (Pramoedyo et al.,
2020). This approach offers a more comprehensive and dynamic understanding of the stunting

phenomenon and its determinants in Blitar Regency.

Moreover, the approach that integrates GWR and panel data provides additional value in the
policy context (Mar'ah & Sifriyani, 2023). This study's findings are anticipated to provide a basis for
local governments to develop more precise and localized policies. By considering regional variations,
evidence-based policy innovations are expected to more effectively reduce stunting rates and improve

the quality of life for children in Blitar Regency.

Overall, this study aims to make a significant contribution to the efforts to combat stunting in
Blitar Regency through an innovative analytical approach. By gaining a deeper understanding of the
local factors influencing stunting through GWR and panel data methods, it is hoped that more targeted
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and sustainable interventions can be implemented, Ultimately, this approach aims to enhance the

health and overall well-being of children in the region. (Muche et al., 2021).

Il METHODS
21. Data

This study utilizes panel data, encompassing cross-sectional and time-series data from all sub-
districts in Blitar Regency during the 2021-2023 period. The data were obtained from official sources,
such as the Blitar Regency Health Office, for stunting prevalence. The variables analyzed include the
dependent variable, namely the stunting prevalence rate, and independent variables such as maternal
education level, per capita income, the number of postpartum mothers receiving Vitamin A

supplements, immunization coverage, and the availability of healthcare personnel.

2.2. Panel Regression
Panel data integrates cross-sectional and time-series elements, with each unit in the cross-
sectional dataset being observed repeatedly over a defined time frame. The panel data regression

model is generally represented by the following equation:(Ngabu, Pramoedyo, et al., 2023)

n
Yie = aie + Z BreXit + €it €]
k=1
where :
Vit : Response variable
Qi : Intercept coefficient
B : Panel regression parameter
Xkit : Predictor variable
Eit : Residual/error

2.3. Geographically Weighted Regression

Geographically Weighted Regression (GWR) is a statistical technique designed to examine
spatial heterogeneity. This phenomenon arises when the same predictor variable generates varying
responses across different locations within the same study area (H. Yu et al., 2020). The GWR model
is an extension of simple linear regression. While simple linear regression uses the same parameters
for all locations, GWR assigns different parameters to each location. The GWR model can be

expressed as follows: (Pramoedyo et al., 2024).

p
yi = Boluyvy) + Z Bre(upvdxy + & ,i=12,..,n (2)
k=1
where:
Vi : Response variable
B : Panel regression parameter
u;, v; : Coordinate points (longitude and latitude)
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Xik : Predictor variable

& : Residual/error

2.4. Estimation of GWR Parameters

The parameters in the Geographically Weighted Regression (GWR) model can be estimated
using the Weighted Least Squares (WLS) method by applying specific weights to each location. The
parameter estimation for the GWR model at each observation point can be represented as follows:

(Iriany et al., 2024).

Blui,vy) = [XTW (u;, v) X1 XTW (wy, vy)y (3)
Where:
w : weight matrix
with W (i) representing a spatial weight matrix of size n x n
wip O w 0
wi=|9 Yo o9
0 0 .. W

2.5. Geographically Weighted Panel Regression (GWPR)
The Geographically Weighted Panel Regression (GWPR) integrates the characteristics of the
GWR model with the principles of panel data regression. The equation for the GWPR model is
formulated as follows: (Du et al., 2020).
Vie = Bo(ie, vie) + Z}_ Bj(uie, vie) Xiej + Ei¢

The GWPR model can be written in matrix form as follows.

¥ =XB (i, vip) + € (4)
Where :
(V111 [1 3:‘:111 7:51112 )fllp_ &1
Va1 1 x2.11 x2.12 e Xo1p &)1
jiNl 1 gy Ry 7 NP E’Vl
Y12 1 Xypq KXypp o Xazp €12
Yaz| o [1 KXoz Hozp Xazp | €22
y=|:i)| X= ; : : &=1:
N2 1 Xna1 Ewaz O Xnzp énz
Vir 1 % KX 7 Xipp &r
Var 1 X1 Xarz - Hyy Er
Lynr _1 XNT1  XNT2 ¥nrp] LEyT]
Bo (Wit vir)
B (wie, vir)
B (Wi, vie) = | B2 (wir, vir) (5)
ﬁp(uitivit)

92



2.6. Estimation of GWPR Parameters

The parameters of the GWR model can be estimated through the Weighted Least Squares
method, which involves assigning specific weights to each location and observation time. (D. Yu et al.,
2021). The parameters in the GWPR model vary across different locations and times (Chotimah, 2019).
The weight element w;.(u;;, v;¢) is incorporated into equation (4), resulting in the following GWPR

model equation (lriany et al., 2023).
1 1 1 P 1
Wi (Wi, vie) Vie = WA Wie, Vi) Bo (ie, Vie) + Wi (Wig, vie) Zk_lﬁk Wit Vi) Xiej + Wi (Wie, vie) Eie

Next, the sum of squared errors is minimized.

T N T N 2
Z Z WUy, vi) € = Z Z w(Uie, Vi) [yit = Bo(uie, vi) — Z B, vir) J'C'itj]
1i=1 i=1 I

t=1i= t=1i=

T N
. . .. 2
= z Z w (U, Vit)[}’it = Bo(uie, vie) — Br(Wie, Vi) Xijgg — =+ — Bp (Ui, vie) xitp]

t=11i=1
It can be written in matrix form as follows.

STW(uit: Vi )E = [y - Xﬁ(uib Vit)]TW(uit: vit)[j’ - Xﬁ(uit» Vit)]
= YW (e, i)y — YW (wie, vi) XB (i, vie) — BT (wie, i) XTW (g, v3)y
+ BT (uie, vi) XTW (uie, vi) X B (g, vie)
= YW (e, vi)y — 2B7 (wie, vi) XTW (e, i)y + BT (i, vie) XTW (uie, i) XB (e, i)

2.7. Spatial Heterogeneity

Spatial heterogeneity refers to a condition in a region where there are differences between
one location and another, whether in terms of geography, socio-cultural conditions, or other factors
that can create spatial heterogeneity in the studied area (Putra et al., 2022). Testing for spatial
heterogeneity can be performed using the Breusch-Pagan test statistic, with the following hypotheses
applied.

Hy: o2 = g2 = - = g2 = g2 (no spatial heterogeneity)

H,: o} # o? (spatial heterogeneity exists)

The test statistic used is as follows.
DN oo (W [eWe]t
b = (3)r2@ D21+ (7) 5| ~ e
If the value of BP > yZ,, or the p — value < a, If Hy is rejected, it indicates the presence of

spatial heterogeneity.

2.8. Spatial Autocorrelation
Spatial autocorrelation refers to the correlation of a variable based on its geographic location
(Ngabu, Fitriani, et al., 2023). The hypotheses used are as follows:
Hy : I =0 (No spatial effect)

H, : I # 0 (spatial effect exists)
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The test statistic used is as follows.

1—E()
Zhitung =T
JVar(l)
where:
1 : Moran’s | Index
E(D) : Expected value of Moran'’s | test

Var(Il) : Variance of Moran’s | Index
2
nle - TlSZ + 3(212] WU)
2
ZiZjwi) (n?-1)
2
%W+ W)
S =
2
Si= ) Wi+ W, )
i

Var(l) =

The equation for Moran's | is as follows:
_ ny XWX — X)X - X)
WX — X)?

With:
-1
(n—-1)
The decision-making criteria are as follows: if |Zhitung| > Z(E) atau p —value < a, then Hy is

E() =

rejected, and it can be concluded that there is a relationship between the characteristics of different
regions. The value of Moran’s | index ranges between -1 and 1. If | > E(l) then there is positive

autocorrelation, and if | < E(l), then there is negative autocorrelation.

2.9. Spatial Weights

The role of spatial weighting represents the relative location of one observation point to another
(Chotimah, 2019). The farther the distance between two points, the smaller the weight compared to
points that are closer together. The weighting function will provide different parameter estimates at
each location. Weighting in the GWR model uses spatial coordinate variables, specifically longitude
and latitude (Getis, 2009). Longitude refers to the meridians that extend from the North Pole to the
South Pole, used to determine a point's east-west position on the Earth's surface. Latitude, on the
other hand, refers to the parallels that encircle the Earth horizontally, used to measure a point's north-

south position.

In GWR modeling, one commonly used weighting function is the adaptive kernel weighting
function. This function adjusts the bandwidth dynamically for each location being analyzed. Several
types of adaptive kernel functions include the following: (Fotheringham et al., 2017)

1. Adaptive Kernel Gaussian
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2. Adaptive Kernel Bisquare

wij= hi
0

With d;; representing the Euclidean distance between observations at point | and point j,

the formula to calculate the Euclidean distance is as follows:

dij = J(ui —w)’ + (v —v)’

with:
(u;,v;) : coordinates of location i
(u;,v;) : coordinates of location j

The variable h; denotes the bandwidth at the i-th observation location. To determine the
optimal bandwidth, the Cross Validation (CV) method is commonly employed. The optimal bandwidth
is identified by minimizing the CV value (Wheeler, 2021). The Cross Validation (CV) formula is

expressed as follows (Fotheringham et al., 2024):

V=Y i 9ai))?
where:

Vi : response variable at observation i-th

y.i(h) : estimated value of y; with bandwidth h where the estimator at location i-th is excluded from

the estimation process.

M. RESULTS AND DISSCUSSION
3.1.  Model Selection

To determine the most suitable panel regression model among the Common Effect Model
(CEM), Fixed Effect Model (FEM), and Random Effect Model (REM), a series of tests is conducted.
The process begins with the Chow test to compare the CEM and FEM, followed by the Hausman test
to decide between the FEM and REM models.

Table 1 : Model Selection

Test F-count x? P-Value Decision
Uji Chow 31,618 - 3.6x10-12 fixed effect
Uji Hausman - 578.48 3.5x10-™ fixed effect

From Table 1, it is shown that the p-values from both the Chow and Hausman tests are less than 0.05.
Based on the results of the Chow test and the Hausman test, both confirm that the Fixed Effect Model

(FEM) is the most suitable. Consequently, the Lagrange Multiplier test is unnecessary.
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3.2. Spatial Heterogeneity Test
Spatial heterogeneity tests the variability between observation locations. The Breusch-Pagan
test is used to perform the spatial heterogeneity analysis. The results are as follows:
Table 2 : Spatial Heterogeneity Test
BP P-Value
28.354 0.0078

As shown in Table 2, the test results yield a p-value of 0.0078, which is p — value < a (0.05), indicating
the presence of spatial heterogeneity in the data. To address this, spatial analysis is applied, utilizing
the GWPR method.

3.3. Testing the Significance of Parameters

The estimation of parameters in the GWPR model using the adaptive bisquare kernel employs
the WLS method, producing a unique model for each district. Parameter significance is tested at each
location using the t-test, where a p—value < a (0.05) indicates that the predictor variable significantly
influences the response variable. The table below presents the results of the parameter significance
test for location 1 using the adaptive bisquare kernel weighting.

Table 3 : Parameter Significance for Wlingi Subdistrict

Variable Coefficient Leount P-value R-Square
X1 0.356 -6.562 0.000
X2 0.492 3.625 0.000
X3 1.362 2.365 0.013 0.9123
Xq -0.365 0.562 0.462
Xs 0.025 1.002 0.158

Based on Table 3, it is shown that the variables influencing the prevalence of stunting in Wlingi
Subdistrict, Blitar Regency, are X1,X2,X3, as their p-values are less than < a (0,05). Next, the predictor
variables influencing the prevalence of stunting in each subdistrict of Blitar Regency will be determined
using the adaptive bisquare kernel weighting function. The coefficient of determination results indicate
that the R-Square value of the GWPR model is 0.9123, meaning that the stunting modeling in Blitar
Regency can be explained by the independent variables in this study by 91.23%.

3.4. Model Interpretation

The optimal model for the Geographically Weighted Panel Regression (GWPR) in analyzing
stunting prevalence cases in Blitar Regency is based on the adaptive bisquare kernel weighting
function. This approach produces a unique GWPR model for each subdistrict, resulting in 38 distinct

models across Blitar Regency.
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$1p = 0.786 + 0.325X141 + 0.855X 5,1 — 3.689X3pq + 0.456X 01 + 0.325X 5,4

P30t = 0.897 + 0.345X,1 + 0.743X¢1 + 3.271X341 + 0.542X 401 + 0.552X5¢,

Based on the obtained models, the following is an explanation of one model, namely the GWPR
model for Wlingi Subdistrict. In the GWPR model equation for Wlingi Subdistrict, it is observed that
the predictor variables X, X,, and X3 significantly influence the number of stunting prevalence cases.
Specifically, for X; in Wlingi Subdistrict, its impact is statistically significant, indicating a strong
relationship with the response variable, representing the percentage of the population with stunting
prevalence, a 1% increase in X;, assuming other variables remain constant, will increase the number
of stunting prevalence cases in Wlingi by 0.010 individuals. Furthermore, a 1% increase in X,
assuming other variables remain constant, will decrease the number of X, in Wlingi Subdistrict by

0.855 percent.

Iv. CONCLUSION
From the analysis and discussion carried out, the following conclusions have been reached:

1. There is a spatial effect on the number of stunting prevalence cases in Blitar Regency from
2021 to 2023. The spatial effect in this analysis refers to spatial heterogeneity, which indicates
that the predictor variables provide varying responses in each subdistrict of Blitar Regency.

2. The factors X; and X, significantly influence the stunting prevalence cases in Blitar Regency.

In addition to the GWPR method, future research can integrate other approaches, such as Machine
Learning techniques like Recurrent Neural Networks, to detect more complex patterns or identify

interactions between variables.
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