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ABSTRACT 

Stunting remains a significant public health issue in Blitar Regency, Indonesia, particularly in rural areas where 

chronic malnutrition and inadequate access to healthcare services persist as major challenges. This study aims to 

explore the spatial and temporal factors influencing stunting using the Geographically Weighted Panel Regression 

(GWPR) method. By integrating cross-sectional and time-series data from 2021 to 2023, the study evaluates 

various factors, including the stunting prevalence rate and independent variables such as maternal education level, 

per capita income, the number of postpartum mothers receiving Vitamin A supplements, immunization coverage, 

and the availability of healthcare personnel. The findings reveal that stunting prevalence is significantly influenced 

by location-specific variables, with healthcare access and nutrition being dominant factors in rural areas, while 

economic conditions exert a greater influence in urban areas. The GWPR model provides deeper insights into 

spatial heterogeneity and offers valuable guidance for designing targeted and region-specific policies to reduce 

stunting rates in Blitar Regency. The results indicate that the R-Square value of the GWPR model is 0.9123, 

meaning that 91.23% of the stunting prevalence in Blitar Regency can be explained by the independent variables 

in this study. 
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I. INTRODUCTION 

 Stunting is a significant public health issue in Indonesia, especially in rural areas like Blitar 

Regency. Stunting, or short stature, refers to a condition where children are shorter than the standard 

height for their age due to chronic malnutrition and repeated infections during growth periods (Beal et 

al., 2018). Data from Indonesia's Ministry of Health shows that the prevalence of stunting in Blitar 

Regency remains high. This issue is complex and multifaceted, requiring innovative and holistic 

approaches to understand and address it (Budiastutik & Nugraheni, 2018).  

 

 Various factors contribute to the high stunting rates, including socioeconomic conditions, 

parenting practices, access to healthcare services, and the availability and quality of food (Prendergast 

& Humphrey, 2014). Each of these factors may vary spatially across different areas within Blitar 

Regency. Therefore, an analysis that considers spatial variation is crucial for a more comprehensive 

understanding of the distribution and determinants of stunting (Sipahutar et al., 2022). In this context, 

location-based statistical modeling, such as Geographically Weighted Regression (GWR), offers a 

more accurate approach to analyzing data with spatial dimensions (Iriany et al., 2023) (Sulekan & 

Jamaludin, 2020). 

 

 GWR is a statistical method that accounts for geographic variation by assigning greater 

weight to data that are geographically closer (Wheeler, 2021). The innovation of this study lies in the 

use of GWR to more accurately identify the factors influencing stunting in various locations, as 

compared to conventional regression models that assume uniform relationships between variables 

across the entire study area (Anismuslim et al., 2023). This approach provides new insights into the 

local variations of stunting determinants, which in turn can assist in designing more effective and 

targeted interventions. 

 

 This research also introduces the use of panel data, which combines cross-sectional and time 

series data, to capture both the temporal dynamics and spatial variations of stunting. The innovation 

in using panel data enables a deeper analysis of changes in the determinants of stunting over time 

and how the interaction between these factors evolves across different locations (Pramoedyo et al., 

2020). This approach offers a more comprehensive and dynamic understanding of the stunting 

phenomenon and its determinants in Blitar Regency. 

 

 Moreover, the approach that integrates GWR and panel data provides additional value in the 

policy context (Mar’ah & Sifriyani, 2023). This study's findings are anticipated to provide a basis for 

local governments to develop more precise and localized policies. By considering regional variations, 

evidence-based policy innovations are expected to more effectively reduce stunting rates and improve 

the quality of life for children in Blitar Regency. 

 

 Overall, this study aims to make a significant contribution to the efforts to combat stunting in 

Blitar Regency through an innovative analytical approach. By gaining a deeper understanding of the 

local factors influencing stunting through GWR and panel data methods, it is hoped that more targeted 
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and sustainable interventions can be implemented, Ultimately, this approach aims to enhance the 

health and overall well-being of children in the region. (Muche et al., 2021).  

 

II. METHODS 

2.1. Data 

This study utilizes panel data, encompassing cross-sectional and time-series data from all sub-

districts in Blitar Regency during the 2021–2023 period. The data were obtained from official sources, 

such as the Blitar Regency Health Office, for stunting prevalence. The variables analyzed include the 

dependent variable, namely the stunting prevalence rate, and independent variables such as maternal 

education level, per capita income, the number of postpartum mothers receiving Vitamin A 

supplements, immunization coverage, and the availability of healthcare personnel. 

 

2.2. Panel Regression 

Panel data integrates cross-sectional and time-series elements, with each unit in the cross-

sectional dataset being observed repeatedly over a defined time frame. The panel data regression 

model is generally represented by the following equation:(Ngabu, Pramoedyo, et al., 2023)  

𝑌𝑖𝑡 = 𝛼𝑖𝑡 + ∑ 𝛽𝑘𝑋𝑘𝑖𝑡 + 𝜀𝑖𝑡

𝑛

𝑘=1

                                                              (1) 

where :  

𝑦𝑖𝑡   : Response variable 

𝛼𝑖𝑡          : Intercept coefficient  

β   : Panel regression parameter 

𝑥𝑘𝑖𝑡   : Predictor variable 

𝜀𝑖𝑡  : Residual/error 

 

2.3. Geographically Weighted Regression 

 Geographically Weighted Regression (GWR) is a statistical technique designed to examine 

spatial heterogeneity. This phenomenon arises when the same predictor variable generates varying 

responses across different locations within the same study area (H. Yu et al., 2020). The GWR model 

is an extension of simple linear regression. While simple linear regression uses the same parameters 

for all locations, GWR assigns different parameters to each location. The GWR model can be 

expressed as follows: (Pramoedyo et al., 2024). 

𝑦𝑖 = 𝛽0(𝑢𝑖 , 𝑣𝑖) + ∑ 𝛽𝑘(𝑢𝑖, 𝑣𝑖)𝑥𝑖𝑘 + 𝜀𝑖  

𝑝

𝑘=1

, 𝑖 = 1,2, … , 𝑛                         (2) 

where: 

𝑦𝑖    : Response variable 

β   : Panel regression parameter 

𝑢𝑖 , 𝑣𝑖  : Coordinate points (longitude and latitude) 
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𝑥𝑖𝑘   : Predictor variable 

𝜀𝑖  : Residual/error 

 

2.4. Estimation of GWR Parameters 

The parameters in the Geographically Weighted Regression (GWR) model can be estimated 

using the Weighted Least Squares (WLS) method by applying specific weights to each location. The 

parameter estimation for the GWR model at each observation point can be represented as follows: 

(Iriany et al., 2024). 

  𝜷̂(𝑢𝑖 , 𝑣𝑖) =  [𝑿𝑻𝑾(𝑢𝑖 , 𝑣𝑖)𝑿]−1𝑿𝑇𝑊(𝑢𝑖 , 𝑣𝑖)𝒚   (3) 

Where: 

W    : weight matrix 

with 𝑾(𝑖) representing a spatial weight matrix of size 𝑛 × 𝑛 

𝐖(i) =  [

𝑤𝑖1 0 … 0
0 𝑤𝑖2 … 0
⋮
0

⋮
0

⋱
…

⋮
𝑤𝑖𝑛

] 

 

2.5. Geographically Weighted Panel Regression (GWPR) 

The Geographically Weighted Panel Regression (GWPR) integrates the characteristics of the 

GWR model with the principles of panel data regression. The equation for the GWPR model is 

formulated as follows: (Du et al., 2020). 

𝑦̈𝑖𝑡 = 𝛽0(𝑢𝑖𝑡, 𝑣𝑖𝑡) + ∑ 𝛽𝑗(𝑢𝑖𝑡, 𝑣𝑖𝑡)
𝑗

𝑥̈𝑖𝑡𝑗 + 𝜀𝑖̈𝑡 

The GWPR model can be written in matrix form as follows. 

  𝒚̈ = 𝑋̈𝛽 (𝑢𝑖𝑡, 𝑣𝑖𝑡) + 𝜀̈     (4) 

Where :  

𝒚̈ =  

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑦̈11

𝑦̈21

⋮
𝑦̈𝑁1

𝑦̈12

𝑦̈22

⋮
𝑦̈𝑁2

⋮
𝑦̈1𝑇

𝑦̈2𝑇

⋮
𝑦̈𝑁𝑇]

 
 
 
 
 
 
 
 
 
 
 
 
 

    𝑿̈ =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
1 𝑥̈111 𝑥̈112

1 𝑥̈211 𝑥̈212

⋮ ⋮ ⋮

… 𝑥̈11𝑝

… 𝑥̈21𝑝

⋱ ⋮

1 𝑥̈𝑁11 𝑥̈𝑁12

1 𝑥̈121 𝑥̈122

1
⋮
1
⋮
1
1
⋮
1

𝑥̈221

⋮
𝑥̈𝑁21

⋮
𝑥̈1𝑇1

𝑥̈2𝑇1

⋮
𝑥̈𝑁𝑇1

𝑥̈222

⋮
𝑥̈𝑁22

⋮
𝑥̈1𝑇1

𝑥̈2𝑇2

⋮
𝑥̈𝑁𝑇2

… 𝑥̈𝑁1𝑝

… 𝑥̈12𝑝

…
⋱…
⋱…
…
⋱
…

𝑥̈22𝑝

⋮
𝑥̈𝑁2𝑝

⋮
𝑥̈1𝑇𝑝

𝑥̈2𝑡𝑝

⋮
𝑥̈𝑁𝑇𝑝]

 
 
 
 
 
 
 
 
 
 
 
 
 

     𝜀̈  =  

[
 
 
 
 
 
 
 
 
 
 
 
 
𝜀1̈1

𝜀2̈1

⋮
𝜀𝑁̈1

𝜀1̈2

𝜀2̈2

⋮
𝜀𝑁̈2

⋮
𝜀1̈𝑇

𝜀2̈𝑇

⋮
𝜀𝑁̈𝑇]

 
 
 
 
 
 
 
 
 
 
 
 

 

   𝜷 (𝒖𝒊𝒕, 𝒗𝒊𝒕) =  

[
 
 
 
 
 𝛽0(𝑢𝑖𝑡, 𝑣𝑖𝑡)

𝛽1(𝑢𝑖𝑡, 𝑣𝑖𝑡)

𝛽2(𝑢𝑖𝑡 , 𝑣𝑖𝑡)
⋮

𝛽𝑝(𝑢𝑖𝑡 , 𝑣𝑖𝑡)]
 
 
 
 

    (5) 
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2.6. Estimation of GWPR Parameters 

 The parameters of the GWR model can be estimated through the Weighted Least Squares 

method, which involves assigning specific weights to each location and observation time. (D. Yu et al., 

2021). The parameters in the GWPR model vary across different locations and times (Chotimah, 2019). 

The weight element 𝑤𝑖𝑡(𝑢𝑖𝑡, 𝑣𝑖𝑡) is incorporated into equation (4), resulting in the following GWPR 

model equation (Iriany et al., 2023). 

𝑤
𝑖𝑡

1
2(𝑢𝑖𝑡, 𝑣𝑖𝑡)𝑦̈𝑖𝑡 = 𝑤

𝑖𝑡

1
2(𝑢𝑖𝑡, 𝑣𝑖𝑡)𝛽0(𝑢𝑖𝑡, 𝑣𝑖𝑡) + 𝑤

𝑖𝑡

1
2(𝑢𝑖𝑡, 𝑣𝑖𝑡)∑ 𝛽𝑘

𝑝

𝑘=1
(𝑢𝑖𝑡, 𝑣𝑖𝑡)𝑥̈𝑖𝑡𝑗 + 𝑤

𝑖𝑡

1
2(𝑢𝑖𝑡, 𝑣𝑖𝑡)𝜀𝑖̈𝑡  

Next, the sum of squared errors is minimized. 

∑∑𝒘(𝑢𝑖𝑡, 𝑣𝑖𝑡)

𝑁

𝑖=1

𝑇

𝑡=1

𝜀𝑖𝑡
2 =  ∑∑𝒘(𝑢𝑖𝑡, 𝑣𝑖𝑡)

𝑁

𝑖=1

𝑇

𝑡=1

[𝑦̈𝑖𝑡 − 𝛽0(𝑢𝑖𝑡, 𝑣𝑖𝑡) −  ∑ 𝛽𝑗(𝑢𝑖𝑡, 𝑣𝑖𝑡)
𝑗

𝑥̈𝑖𝑡𝑗]

2

= ∑∑𝑤(𝑢𝑖𝑡, 𝑣𝑖𝑡)[𝑦̈𝑖𝑡 − 𝛽0(𝑢𝑖𝑡, 𝑣𝑖𝑡) − 𝛽1(𝑢𝑖𝑡, 𝑣𝑖𝑡) 𝑥̈𝑖𝑡1 − ⋯− 𝛽𝑝(𝑢𝑖𝑡, 𝑣𝑖𝑡) 𝑥̈𝑖𝑡𝑝]
2

𝑁

𝑖=1

𝑇

𝑡=1

  

It can be written in matrix form as follows.  

𝜀𝑇𝑾(𝑢𝑖𝑡, 𝑣𝑖𝑡)𝜀 =  [𝒚̈ − 𝑿̈𝜷(𝑢𝑖𝑡, 𝑣𝑖𝑡)]
𝑇
𝑾(𝑢𝑖𝑡, 𝑣𝑖𝑡)[𝒚̈ − 𝑿̈𝜷(𝑢𝑖𝑡, 𝑣𝑖𝑡)]

= 𝒚̈𝑻𝑾(𝑢𝑖𝑡, 𝑣𝑖𝑡)𝒚̈ −  𝒚̈𝑻𝑾(𝑢𝑖𝑡, 𝑣𝑖𝑡)𝑿̈𝜷(𝑢𝑖𝑡, 𝑣𝑖𝑡) − 𝜷𝑻(𝑢𝑖𝑡, 𝑣𝑖𝑡)𝑿̈
𝑻𝑾(𝑢𝑖𝑡, 𝑣𝑖𝑡)𝒚̈

+  𝜷𝑻(𝑢𝑖𝑡, 𝑣𝑖𝑡)𝑿̈
𝑻𝑾(𝑢𝑖𝑡, 𝑣𝑖𝑡)𝑿̈𝜷(𝑢𝑖𝑡, 𝑣𝑖𝑡)

=  𝒚̈𝑻𝑾(𝑢𝑖𝑡, 𝑣𝑖𝑡)𝒚̈ − 2𝜷𝑻(𝑢𝑖𝑡, 𝑣𝑖𝑡)𝑿̈
𝑻𝑾(𝑢𝑖𝑡 , 𝑣𝑖𝑡)𝒚̈ + 𝜷𝑻(𝑢𝑖𝑡, 𝑣𝑖𝑡)𝑿̈

𝑻𝑾(𝑢𝑖𝑡, 𝑣𝑖𝑡)𝑿̈𝜷(𝑢𝑖𝑡, 𝑣𝑖𝑡)  

 

2.7. Spatial Heterogeneity 

Spatial heterogeneity refers to a condition in a region where there are differences between 

one location and another, whether in terms of geography, socio-cultural conditions, or other factors 

that can create spatial heterogeneity in the studied area (Putra et al., 2022). Testing for spatial 

heterogeneity can be performed using the Breusch-Pagan test statistic, with the following hypotheses 

applied. 

 𝐻0 ∶  𝜎1
2 = 𝜎2

2 = ⋯ = 𝜎𝑛
2 = 𝜎2 (no spatial heterogeneity) 

 𝐻1 ∶   𝜎𝑖
2 ≠ 𝜎2 (spatial heterogeneity exists) 

The test statistic used is as follows. 

𝐵𝑃 =  (
1

2
) 𝑓′𝒁(𝒁′𝒁)−𝟏𝒁′𝒇 + (

1

𝑇
) [

𝑒′𝑾𝒆

𝜎2 ]

2

 ~ 𝜒𝛼(𝑘+1)
2  

If the value of 𝐵𝑃 > 𝜒𝑘+1
2  or the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 <  𝛼, If 𝐻0 is rejected, it indicates the presence of 

spatial heterogeneity. 

 

2.8. Spatial Autocorrelation 

Spatial autocorrelation refers to the correlation of a variable based on its geographic location 

(Ngabu, Fitriani, et al., 2023). The hypotheses used are as follows: 

𝐻0 ∶  𝐼 = 0  (No spatial effect)  

𝐻1 ∶  𝐼 ≠ 0 (spatial effect exists) 
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The test statistic used is as follows. 

𝑍ℎ𝑖𝑡𝑢𝑛𝑔 =
𝐼 − 𝐸(𝐼)

√𝑉𝑎𝑟(𝐼)
 

where:  

𝐼    : Moran’s I Index   

𝐸(𝐼)   : Expected value of Moran’s I test   

𝑉𝑎𝑟(𝐼) : Variance of Moran’s I Index 

𝑉𝑎𝑟(𝐼) =  
𝑛2𝑆1 − 𝑛𝑆2 + 3(∑ ∑ 𝑾𝑖𝑗𝑗𝑖 )

2

(∑ ∑ 𝑾𝑖𝑗𝑗𝑖 )
2
(𝑛2 − 1)

 

𝑆1 = 
∑ ∑ (𝑾𝑖𝑗 + 𝑾𝑗𝑖  )

2
𝑗𝑖

2
 

𝑆2 = ∑ (𝑾𝑖. + 𝑾.𝑖  )
2

𝑖
  

 

The equation for Moran's I is as follows: 

𝐼 =  
𝑛 ∑ ∑ 𝑾𝑖𝑗(𝑋𝑖 − 𝑋)((𝑋𝑗 − 𝑋̅)𝑗𝑖

𝑾∑ (𝑋𝑖 − 𝑋)2
𝑗

 

With:  

𝐸(𝐼) =  
−1

(𝑛 − 1)
 

The decision-making criteria are as follows: if |𝑍ℎ𝑖𝑡𝑢𝑛𝑔| >  𝑍(
𝛼

2
) atau 𝑝 − 𝑣𝑎𝑙𝑢𝑒 <  𝛼, then 𝐻0 is 

rejected, and it can be concluded that there is a relationship between the characteristics of different 

regions. The value of Moran’s I index ranges between -1 and 1. If I > E(I) then there is positive 

autocorrelation, and if I < E(I), then there is negative autocorrelation. 

 

2.9. Spatial Weights 

The role of spatial weighting represents the relative location of one observation point to another 

(Chotimah, 2019). The farther the distance between two points, the smaller the weight compared to 

points that are closer together. The weighting function will provide different parameter estimates at 

each location. Weighting in the GWR model uses spatial coordinate variables, specifically longitude 

and latitude (Getis, 2009). Longitude refers to the meridians that extend from the North Pole to the 

South Pole, used to determine a point's east-west position on the Earth's surface. Latitude, on the 

other hand, refers to the parallels that encircle the Earth horizontally, used to measure a point's north-

south position. 

 

In GWR modeling, one commonly used weighting function is the adaptive kernel weighting 

function. This function adjusts the bandwidth dynamically for each location being analyzed. Several 

types of adaptive kernel functions include the following: (Fotheringham et al., 2017)  

1. Adaptive Kernel Gaussian  
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𝒘𝒊𝒋 = exp (−
1

2
(
𝑑𝑖𝑗

ℎ𝑖
)

2

) 

2. Adaptive Kernel Bisquare  

𝒘𝒊𝒋 = {(1 − (
𝑑𝑖𝑗

ℎ𝑖
)

2

)

2

0

 

With 𝑑𝑖𝑗 representing the Euclidean distance between observations at point I and point j, 

the formula to calculate the Euclidean distance is as follows: 

𝑑𝑖𝑗 = √(𝑢𝑖 − 𝑢𝑗)
2
+ (𝑣𝑖 − 𝑣𝑗)

2
 

with:  

(𝑢𝑖 , 𝑣𝑖) : coordinates of location i 

(𝑢𝑗, 𝑣𝑗) : coordinates of location j 

The variable ℎ𝑖 denotes the bandwidth at the i-th observation location. To determine the 

optimal bandwidth, the Cross Validation (CV) method is commonly employed. The optimal bandwidth 

is identified by minimizing the CV value (Wheeler, 2021). The Cross Validation (CV) formula is 

expressed as follows (Fotheringham et al., 2024): 

𝐶𝑉 =  ∑ (𝑦𝑖 − 𝑦̂≠𝑖(ℎ))2
𝑛

𝑖=1
 

where:   

𝑦𝑖 : response variable at observation i-th   

𝑦̂≠𝑖(ℎ) : estimated value of 𝑦𝑖 with bandwidth h where the estimator at location i-th is excluded from 

the estimation process. 

 

III. RESULTS AND DISSCUSSION  

3.1. Model Selection 

To determine the most suitable panel regression model among the Common Effect Model 

(CEM), Fixed Effect Model (FEM), and Random Effect Model (REM), a series of tests is conducted. 

The process begins with the Chow test to compare the CEM and FEM, followed by the Hausman test 

to decide between the FEM and REM models. 

 

Table 1 : Model Selection 

Test F-count 𝜒2 P-Value Decision 

Uji Chow 31,618 - 3.6x10-12 fixed effect 

Uji Hausman - 578.48 3.5x10-11 fixed effect 

 

From Table 1, it is shown that the p-values from both the Chow and Hausman tests are less than 0.05. 

Based on the results of the Chow test and the Hausman test, both confirm that the Fixed Effect Model 

(FEM) is the most suitable. Consequently, the Lagrange Multiplier test is unnecessary. 
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3.2. Spatial Heterogeneity Test 

 Spatial heterogeneity tests the variability between observation locations. The Breusch-Pagan 

test is used to perform the spatial heterogeneity analysis. The results are as follows: 

Table 2 : Spatial Heterogeneity Test 

BP P-Value 

28.354 0.0078 

 

As shown in Table 2, the test results yield a p-value of 0.0078, which is 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 𝛼 (0.05), indicating 

the presence of spatial heterogeneity in the data. To address this, spatial analysis is applied, utilizing 

the GWPR method. 

 

3.3. Testing the Significance of Parameters 

The estimation of parameters in the GWPR model using the adaptive bisquare kernel employs 

the WLS method, producing a unique model for each district. Parameter significance is tested at each 

location using the t-test, where a 𝑝−𝑣𝑎𝑙𝑢𝑒 < 𝛼 (0.05) indicates that the predictor variable significantly 

influences the response variable. The table below presents the results of the parameter significance 

test for location 1 using the adaptive bisquare kernel weighting. 

Table 3 : Parameter Significance for Wlingi Subdistrict 

Variable Coefficient 𝒕𝒄𝒐𝒖𝒏𝒕 P-value R-Square 

𝑋1 0.356 -6.562 0.000 

0.9123 

𝑋2 0.492 3.625 0.000 

𝑋3 1.362 2.365 0.013 

𝑋4 -0.365 0.562 0.462 

𝑋5 0.025 1.002 0.158 

  

Based on Table 3, it is shown that the variables influencing the prevalence of stunting in Wlingi 

Subdistrict, Blitar Regency, are X1,X2,X3, as their p-values are less than < 𝛼 (0,05). Next, the predictor 

variables influencing the prevalence of stunting in each subdistrict of Blitar Regency will be determined 

using the adaptive bisquare kernel weighting function. The coefficient of determination results indicate 

that the R-Square value of the GWPR model is 0.9123, meaning that the stunting modeling in Blitar 

Regency can be explained by the independent variables in this study by 91.23%. 

 

3.4. Model Interpretation 

The optimal model for the Geographically Weighted Panel Regression (GWPR) in analyzing 

stunting prevalence cases in Blitar Regency is based on the adaptive bisquare kernel weighting 

function. This approach produces a unique GWPR model for each subdistrict, resulting in 38 distinct 

models across Blitar Regency. 
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𝑦̂1𝑡 = 0.786 + 0.325𝑋1𝑡1 + 0.855𝑋2𝑡1 − 3.689𝑋3𝑡1 + 0.456𝑋4𝑡1 + 0.325𝑋5𝑡1 
…
…
…

 

  

𝑦̂30𝑡 = 0.897 + 0.345𝑋1𝑡1 + 0.743𝑋2𝑡1 + 3.271𝑋3𝑡1 + 0.542𝑋4𝑡1 + 0.552𝑋5𝑡1 
 

Based on the obtained models, the following is an explanation of one model, namely the GWPR 

model for Wlingi Subdistrict.  In the GWPR model equation for Wlingi Subdistrict, it is observed that 

the predictor variables 𝑋1, 𝑋2, and 𝑋3 significantly influence the number of stunting prevalence cases. 

Specifically, for 𝑋1  in Wlingi Subdistrict, its impact is statistically significant, indicating a strong 

relationship with the response variable, representing the percentage of the population with stunting 

prevalence, a 1% increase in 𝑋1, assuming other variables remain constant, will increase the number 

of stunting prevalence cases in Wlingi by 0.010 individuals. Furthermore, a 1% increase in 𝑋1, 

assuming other variables remain constant, will decrease the number of 𝑋2 in Wlingi Subdistrict by 

0.855 percent. 

 

IV. CONCLUSION 

From the analysis and discussion carried out, the following conclusions have been reached: 

1. There is a spatial effect on the number of stunting prevalence cases in Blitar Regency from 

2021 to 2023. The spatial effect in this analysis refers to spatial heterogeneity, which indicates 

that the predictor variables provide varying responses in each subdistrict of Blitar Regency. 

2. The factors 𝑋1 and 𝑋2 significantly influence the stunting prevalence cases in Blitar Regency. 

 

In addition to the GWPR method, future research can integrate other approaches, such as Machine 

Learning techniques like Recurrent Neural Networks, to detect more complex patterns or identify 

interactions between variables. 
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