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ABSTRACT 

Indonesia's distinct tropical climate is influenced by its geographic location near the equator and its complex 

topography, resulting in pronounced seasonal temperature patterns. This study examines the application of the 

Seasonal Generalized Space-Time Autoregressive (SGSTAR) model to forecast the average air temperature in four 

regions of South Sulawesi Province: North Luwu, Tana Toraja, Maros, and Makassar. The dataset comprises 

monthly average temperatures from January 2016 to October 2024, sourced from BMKG's online database. The 

analysis includes stationarity testing using the Augmented Dickey-Fuller (ADF) test, seasonal pattern identification 

with autocorrelation function (ACF), and formal seasonal tests such as QS, QS-R, and KW-R. Spatial weight 

matrices were constructed based on Euclidean distances between regions. The best model was selected based on 

Mean Square Error (MSE), Root Mean Square Error (RMSE), Akaike Information Criterion (AIC), and adjusted R² 

criteria. The findings reveal that the seasonal GSTAR model with AR orders  

(𝑝 = 4), (𝑝𝑠 = 6), and (𝑠 = 12) is the optimal model. Evaluation indicates that the model achieves highly accurate 

forecast in for North Luwu and Makassar, with slightly less accurate forecast for Tana Toraja and Maros. This model 

effectively captures seasonal and spatio-temporal patterns in climate data. The study is expected to serve as a 

foundation for further development of seasonal GSTAR models for other climate datasets, supporting improved 

environmental planning and resource management. 
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I. INTRODUCTION 

Indonesia is geographically situated between the Indian and Pacific Oceans, as well as between 

the continents of Australia and Asia. It lies between 6° North Latitude and 11° South Latitude, and 95° 

East Longitude and 141° East Longitude. The country experiences two primary seasons, wet and dry, 

characteristic of its tropical climate [1] as described in [2]. According to the Meteorology, Climatology, 

and Geophysics Agency (BMKG), climate change refers to a phenomenon where the average weather 

conditions naturally shift or abnormalities occur, disrupting human activities and behaviors in a specific 

region. One of the key factors influencing climate change is temperature [3]. 

 

Air temperature is a measure of the degree of heat or cold at a specific location. It is influenced 

by several factors, including air humidity, solar radiation, and geographical conditions. Higher humidity 

levels indicate greater water vapor content, which can absorb heat energy and thus affect temperature 

fluctuations. According to [3], air temperature variations in Indonesia exhibit highly diverse daily and 

seasonal patterns, influenced by global phenomena such as El Niño and La Niña. High humidity levels 

in Indonesia suggest significant evaporation potential, which can substantially impact local temperature 

changes. 

 

Air temperature in South Sulawesi Province is significantly influenced by its complex 

topographical variations, including coastal areas, lowlands, and mountain ranges extending from north 

to south. The province's geographic location near the equator results in high solar radiation throughout 

the year, leading to relatively stable average temperatures with seasonal variations. According to data 

from BMKG, the average temperature in South Sulawesi ranges between 24°C and 33°C, with the 

highest temperatures typically recorded during the dry season months, such as September to 

November [3]. 

 

Coastal regions such as Makassar and Pare-Pare tend to experience higher air temperatures 

compared to mountainous areas like Malino and North Toraja. This is attributed to the cooling effect at 

higher altitudes, coupled with increased air humidity. The high humidity levels, averaging 75–85%, also 

contribute to the perceived heat experienced by residents in lowland areas [4]. Additionally, global 

climate phenomena such as El Niño and La Niña influence temperature patterns in South Sulawesi. 

These phenomena can intensify or weaken the dry and rainy seasons, affecting daily average 

temperature fluctuations. According to annual reports, the highest temperature in the past five years 

was recorded in October 2023 in Makassar, reaching 36°C, while the lowest temperature was 

observed in the mountainous area of North Toraja in July 2023, at approximately 17°C [5]. 

 

Unstable temperature fluctuations can impact various aspects of people's lives. This is due to 

the dependence of daily activities on weather conditions, such as in agriculture, plantations, trade, 

transportation, and development. Therefore, information about weather conditions, including air 

temperature, is crucial to support the planning and implementation of various community activities [6]. 

Weather prediction, which involves forecasting air temperature, plays a crucial role in helping 

communities prepare for environmental changes. This process is typically carried out through 
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forecasting methods that utilize historical data and mathematical models to predict future values or 

patterns. With this approach, communities and various economic sectors can make better decisions 

based on available information. 

 

In statistics, time series analysis is a procedure used to predict future values based on past 

data [7]. One of the forecasting methods that can be applied is the Autoregressive Integrated Moving 

Average (ARIMA) method. This method has been widely used, including by [5] to forecast the annual 

average air temperature in Indonesia for the period 2022–2031. The best ARIMA model used for 

predicting the annual average air temperature in Indonesia was ARIMA (2,1,4), which indicated that 

the annual average air temperature in Indonesia for 2022 to 2031 is predicted to show a tendency to 

increase. However, this method cannot yet be used for forecasting data that integrates both time and 

location dimensions (spatio-temporal data). 

 

One modeling technique for forecasting data that integrates both time and location dimensions 

(spatio-temporal data) is the Space-Time Autoregressive (STAR) model. This model was introduced 

by [8] for transportation data. However, STAR has limitations in handling locations with differing 

characteristics, leading to the development of a more flexible model, the Generalized Space-Time 

Autoregressive (GSTAR). GSTAR was developed by [9] allowing autoregressive and time series 

parameters to have heterogeneous values across different locations. 

 

However, GSTAR is not capable of addressing seasonal patterns in multivariate time series 

data. To handle seasonal data, the Seasonal Generalized Space-Time Autoregressive (SGSTAR) 

model was developed, which integrates seasonal data with the Space-Time Autoregressive (GSTAR) 

predictor scheme to support the analysis of seasonal data patterns [10]. 

 

Previous studies have demonstrated the advantages of the Seasonal Generalized Space-Time 

Autoregressive (SGSTAR) method in data forecasting. [11] applied the Seasonal GSTAR model to 

predict quarterly rice yields in three districts in Central Java—Banyumas, Cilacap, and Kebumen—with 

results showing the model's superior forecasting performance. A similar study [12] also supports these 

findings, where the Seasonal GSTAR model yielded accurate forecasts. Forecasting the average air 

temperature has not previously been conducted using the SGSTAR method.  

 

Based on these observations, this study aims to employ the Seasonal Generalized Space-Time 

Autoregressive (S-GSTAR) method to model and forecast air temperature data collected from four 

meteorological stations in South Sulawesi, namely the Andi Jemma Meteorological Station in North 

Luwu, the Toraja Meteorological Station in Tana Toraja, the Sultan Hasanuddin Meteorological Station 

in Maros, and the Paotere Maritime Meteorological Station in Makassar. In this study, the model’s 

location weighting is determined using the inverse distance weighting method. 

 

 

 



173 

II. METHODS 

The data used in this study consists of secondary data obtained from the BMKG (Meteorology, 

Climatology, and Geophysics Agency) database website, accessible via the following link: 

https://dataonline.bmkg.go.id/. This secondary data includes information on temperature from January 

2016 to October 2024, recorded by meteorological stations in four regions of South Sulawesi Province. 

The four regions, along with their respective station names, are as follows: North Luwu District (Andi 

Jemma), Maros District (Sultan Hasanuddin), Tana Toraja District (Toraja), and Makassar City (Maritim 

Paotere). The variable used in this study is the average temperature (°C), classified as ratio data. 

According to the Indonesian Dictionary (KBBI), the definition of average temperature (°C) refers to the 

average temperature observed over a continuous 24-hour period. The structure of the data used is as 

follows: 

 

Table 1 : Structure of the Data 

Year Month North Luwu Tana Toraja Maros Makassar 

2016 

January 𝑌1,1 𝑌2,1 𝑌3,1 𝑌4,1 

February 𝑌1,2 𝑌2,2 𝑌3,2 𝑌4,2 

March 𝑌1,3 𝑌2,3 𝑌3,3 𝑌4,3 

⁝ ⁝ ⁝ ⁝ ⁝ 

November 𝑌1,11 𝑌2,11 𝑌3,11 𝑌4,11 

December 𝑌1,12 𝑌2,12 𝑌3,12 𝑌4,12 

⁝ ⁝ ⁝ ⁝ ⁝ ⁝ 

2024 

January 𝑌1,49 𝑌2,49 𝑌3,49 𝑌4,49 

February 𝑌1,50 𝑌2,50 𝑌3,50 𝑌4,50 

⁝ ⁝ ⁝ ⁝ ⁝ 

September 𝑌1,57 𝑌2,57 𝑌3,57 𝑌4,57 

October 𝑌1,58 𝑌2,58 𝑌3,58 𝑌4,58 
 

The data analysis in this study employs the Generalized Space-Time Autoregressive (GSTAR) 

method. The GSTAR model is a space-time model where the parameters are not required to have 

identical values for time and spatial dependencies. Since the data in this study exhibits seasonal 

patterns, the GSTAR model utilized is the seasonal GSTAR model. Mathematically, the GSTAR model 

for seasonal data patterns can be expressed in matrix notation as follows [13]: 

 

𝒁(𝑡) = ∑ [𝚽𝑠
𝑘0𝒁(𝑡 − 𝑠) +∑𝚽𝑠

𝑘𝑙𝑾
(𝑡)𝒁(𝑡 − 𝑠)

𝜆𝑝

𝑙=1

]

𝑝

𝑘=1

+ 𝒆(𝑡) (1) 

where: 

𝚽𝑠
𝑘0 =diag (𝜙𝑘0

(1)
, … , 𝜙𝑘0

(𝑁)
) represents the parameter matrix for the seasonal period s 

𝚽𝑠
𝑘𝑙 =diag (𝜙𝑘𝑙

(1)
,… ,𝜙𝑘𝑙

(𝑁)
) represents the spatial parameter matrix for the seasonal period  

 



174 

The GSTAR-Seasonal model assumes a linear relationship between the target variable and 

inputs in both spatial and seasonal dimensions, while also assuming that the data is stationary or has 

been processed to achieve stationarity. One limitation of this model is its dependence on data 

stationarity, which can complicate the analysis, especially for non-stationary data. Additionally, the 

model is sensitive to outliers and struggles to handle non-linear relationships, and it may require 

substantial computational time for large datasets. To address these issues, pre-processing techniques 

such as differencing are applied to ensure stationarity [14]. Therefore, an initial step involves testing 

for stationarity using the Augmented Dickey-Fuller (ADF) test. By using the ADF test, the GSTAR-

Seasonal model ensures that the data used for analysis does not contain trends that could influence 

spatial and seasonal relationships, making the analysis more valid and reliable [15].  

 

To detect seasonal patterns, the analysis begins with the Autocorrelation Function (ACF) test. 

The ACF test is useful for identifying periodic seasonal patterns by examining correlations at specific 

lags [16]. This is followed by the Q Statistics for Seasonality (QS) test, the Relative Q Statistics for 

Seasonality (QS-R) test, and the Kruskal-Wallis Relative Test for Seasonality (KW-R), which 

complement each other in examining seasonal patterns in the data analyzed using the GSTAR-

Seasonal method. The QS test is based on the analysis of seasonal variation relative to total variation; 

if seasonal variation is significant compared to the total variation, the data exhibits seasonal patterns. 

The QS-R test calculates the strength of seasonality relative to trends or other components in the data. 

Meanwhile, the KW-R test compares the ranks of values within seasonal groups to determine the 

significance of seasonal patterns. Thus, the combination of these three tests enhances the accuracy 

of detecting seasonal patterns in spatial-seasonal data [14]. 

 

In the GSTAR-Seasonal model, spatial weights play a crucial role as they determine the 

strength of spatial relationships between locations and how seasonal patterns influence the variable 

being analyzed. The weights used in this study are based on Euclidean Distance, which is most 

suitable for continuous data, as is the case in this research. Additionally, the computation of Euclidean 

distance is computationally efficient, easy to implement, and provides intuitive interpretations, thus 

supporting the analysis of spatial-seasonal patterns in GSTAR-Seasonal [17]. 

 

The optimal model in GSTAR-Seasonal is identified through several evaluation metrics. MSE 

(Mean Squared Error) and RMSE (Root Mean Squared Error) measure prediction accuracy, where 

smaller values indicate lower prediction errors. AIC (Akaike Information Criterion) is used to assess 

the balance between model fit and complexity, with models having lower AIC values considered more 

efficient. R² (Coefficient of Determination) evaluates how well the model explains the variation in the 

data, with values approaching 1 indicating a good fit. The combination of these four metrics ensures 

the selection of a model that is accurate, simple, and aligns well with the spatial and seasonal.   

In this study, data analysis was conducted using R software, following these steps:   

1. Data Collection: Gathering the required data.   
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2. Stationarity Check: Assessing the stationarity of the data both visually and through 

statistical testing using the Augmented Dickey-Fuller (ADF) test.   

3. Seasonal Pattern Examination: Analyzing seasonal patterns using plots and the 

Autocorrelation Function (ACF), followed by formal tests such as QS, QS-R, and KW-R.   

4. Spatial Weight Matrix Determination: Constructing the spatial weight matrix based on 

Euclidean distances.   

5. Seasonal GSTAR Modeling: Splitting the data into training and testing sets with a 90:10 

ratio.   

6. Model Selection: Determining the AR order (𝑝) and seasonal AR order (𝑝𝑠).   

7. Optimal Model Identification: Selecting the optimal model based on Mean Squared Error 

(MSE), Root Mean Squared Error (RMSE), Akaike Information Criterion (AIC), and Adjusted 

𝑅2.   

8. Assumption Testing: Performing an independence test (Shapiro-Wilk) and residual 

normality test (Box-Ljung) for the optimal model.   

9. Forecasting: Using the optimal model for predictions.   

10. Prediction Comparison: Comparing the forecasted data with the testing data split during the 

initial modeling phase.   

11. Evaluation: Assessing the forecast accuracy based on Mean Absolute Error (MAE) and 

RMSE.   

12. Conclusion: Summarizing the findings.   

 

III. RESULTS AND DISSCUSSION  

3.1. Stationarity Tests 

The initial step in time series data modeling is to ensure that the data is stationary. Stationarity 

can be observed visually or tested through statistical methods. Figure 1 illustrates the time series 

patterns of monthly average temperatures in four regions: North Luwu, Tana Toraja, Makassar, and 

Maros. 

 
Figure 1. Time Series Plot of the Data 
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Visually, the temperature data for the four regions appear to fluctuate around a mean value without 

any significant trend, suggesting stationarity. However, the stationarity of the data can be more formally 

tested using the Augmented Dickey-Fuller (ADF) test. The results of the ADF test for these four regions 

are presented in Table 2. 

 

Table 2: Test Result Augmented Dickey-Fuller 

Regency/City Dickey-Fuller 𝒑 − 𝒗𝒂𝒍𝒖𝒆 

North Luwu -5.0897 0.01000 

Tana Toraja -4.9850 0.01000 

Maros -3.3757 0.06225 

Makassar -3.7379 0.02455 

 

Based on the test results, the data from North Luwu, Tana Toraja, and Makassar meet the stationarity 

assumption under the ADF test, with p-value < alpha, where α=0.05. However, the time series plots in 

Figure 1 indicate the presence of seasonal patterns. This observation is further supported by the 

Autocorrelation Function (ACF) plots for the four regions, as shown in Figure 2. 

 

 
Figure 2: The ACF plot of the average temperature data for the four regions 

 

Figure 2 illustrates a seasonal pattern with a lag of 12, indicating an annual seasonal cycle in the 

temperature data. This seasonal pattern can also be formally tested using the QS, QS-R, and KW-R 

tests. The results of these tests are presented in Table 3. 
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Table 3 : Seasonality Test Results 

Regency/ 

City 

QS  

𝒑 − 𝒗𝒂𝒍𝒖𝒆 

QS-R  

𝒑 − 𝒗𝒂𝒍𝒖𝒆 

KW-R  

𝒑 − 𝒗𝒂𝒍𝒖𝒆 
Conclusion 

North Luwu 4.66294e-15 2.52346e-07 2.21557e-05 Seasonal 

Tana Toraja 9.82970e-11 4.29004e-06 8.13888e-06 Seasonal 

Maros 3.10307e-13 1.23215e-04 4.72926e-06 Seasonal 

Makassar 2.55051e-12 6.32308e-04 4.95879e-05 Seasonal 

 

Based on the time series plot, ACF plot, and formal tests, it can be concluded that there is a seasonal 

pattern in the data. This seasonal pattern is not directly addressed, but will be handled using the 

Seasonal GSTAR model. 

 

3.2. Spatial Weight Matrix 

The initial step in GSTAR modeling is to determine the spatial weight matrix. The weights used 

are based on the distances between the regions. The reference distance is the distance from the 

central point of each region, expressed in terms of latitude and longitude, as shown in Table 4. 

 

Table 4 : Central Coordinates of Each Regency/City 

Regency/City Latitude Longitude 

North Luwu -2.550079 120.4616  

Tana Toraja -3.086729 119.8571 

Maros -5.016468 119.5745 

Makassar -5.133365 119.4082 

 

The distances between the regions are calculated using the Euclidean distance and then standardized, 

resulting in the spatial weight matrix shown in Table 5. 
 

Table 5 : Spatial Weight Matrix 

Regency/City North Luwu Tana Toraja Maros Makassar 

North Luwu 0 0.62572421 0.1929736  0.1813022 

Tana Toraja 0.55547705 0 0.2302257 0.2142972 

Maros 0.06562473 0.08819425 0 0.8461810 

Makassar 0.06228285 0.08292756 0.8547896 0 

 

3.3. GSTAR Modeling 

The modeling process begins by dividing the data into training and testing datasets with a 90:10 

ratio. The training data consists of 96 months, covering the period from January 2016 to December 

2023, while the testing data includes the final 10 months, from January 2024 to October 2024. The 

model used is the Seasonal GSTAR model, which requires the determination of the AR order, seasonal 

AR order, and seasonal period. The seasonal period is 12 (months), as shown in the ACF plot in Figure 
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2. The optimal AR order (𝑝) and seasonal AR order (𝑝𝑠) are determined based on the MSE, RMSE, 

AIC, and R² values. Table 6 presents the 5 combinations of orders with the best evaluation metrics. 

 

Table 6 : Optimal orders for Seasonal-GSTAR 

𝒑 𝒑𝒔 MSE RMSE AIC 𝑹𝟐 

5 6 0.0061 0.0734 0.0153 0.9860 

4 6 0.0092 0.0886 0.0212 0.9800 

11 5 0.0105 0.1010 0.0255 0.9690 

10 5 0.0134 0.1150 0.0308 0.9590 

9 5 0.0194 0.1380 0.0422 0.9430 

 

Based on Table 6, the optimal order for this model is 𝑝 = 5 and 𝑝𝑠 = 6. However, this model fails the 

residual independence test and, therefore, is not used. As an alternative, the second-best model is 

selected, which has 𝑝 = 4 and 𝑝𝑠 = 6. The residuals of this model meet the assumptions of 

independence and normality, as shown in Table 7. 

 

Table 7 : Results of Residual Independency and Normality Tests 

Regency/City Shapiro-Wilk (𝒑 − 𝒗𝒂𝒍𝒖𝒆) Box-Ljung (𝒑 − 𝒗𝒂𝒍𝒖𝒆) 

North Luwu 0.9136 0.0197 

Tana Toraja 0.1524 0.5017 

Maros 0.6594 0.2521 

Makassar 0.9523 0.0129 

 

Therefore, it can be concluded that the best model is the Seasonal GSTAR model with 𝑝 = 4, 𝑝𝑠 = 6, 

and 𝑠 = 12. 

 

3.4. Forecasting 

The optimal model is then used to forecast the average temperature data for the next 10 

months. The forecasted data is presented in Table 8. 

Table 8 : Forecasting Results 

Month/Year North Luwu Tana Toraja Maros Makassar 

January 2024 27.41628 23.20691 26.95868 28.36912 

February 2024 26.71531 23.18310 28.06063 26.09792 

March 2024 26.89794 22.64325 26.28342 29.01481 

April 2024 28.77019 23.82168 29.35990 26.93700 

May 2024 28.18233 21.59118 25.57413 31.21122 

June 2024 26.48291 23.22051 30.16095 24.01340 

July 2024 24.40187 22.09888 23.33281 31.27521 

August 2024 28.60239 22.85327 32.96740 23.93573 

September 2024 28.15926 18.52064 19.62856 35.61418 

October 2024 29.61264 27.71522 37.83332 20.43904 
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The forecasted data in Table 8 is then compared with the test data that was separated at the beginning 

of the modelling process. The evaluation results, including MAE and RMSE values, indicate the 

closeness between the forecasted results and the test data. 

 

Table 9 : Evaluation of Forecasting Results 

Regency/City MSE RMSE MAPE 

North Luwu 1.56 1.25 4.1% 

Tana Toraja 18.00 4.25 12.7% 

Maros 23.40 4.84 13.0% 

Makassar 4.55 2.13 6.2% 

 

Table 9 demonstrates that the forecast accuracy varies across regions. North Luwu exhibits the 

highest forecast accuracy, as indicated by the lowest MSE of 1.56 and RMSE of 1.25. Makassar has 

relatively low error values, with an MSE of 4.55 and an RMSE of 2.13. Tana Toraja and Maros have 

higher errors, with RMSEs of 4.25 and 4.84, respectively, indicating that the forecasted values deviate 

by approximately 4 to 5 degrees Celcius from the actual temperatures.  

 

It is important to note, as shown in Figure 1, that the temperature ranges differ across regions, 

particularly for Tana Toraja. To provide additional context, MAPE values were also calculated for each 

region. As shown in Table 9, the MAPE values for Tana Toraja and Maros are both below 20%, which 

is still considered to reflect good accuracy, albeit not as highly accurate as the forecasted results for 

North Luwu and Makassar. 

 

IV. CONCLUSION 

The average temperature data from four regencies/cities in South Sulawesi Province exhibits 

monthly seasonal components, making the seasonal GSTAR model a suitable choice. In this study, 

the optimal model obtained is GSTAR with AR orders 𝑝 = 4,  

𝑝𝑠 = 6, and 𝑠 = 12. Although this model is not the best in terms of MSE, RMSE, AIC, or 𝑅2, it was 

selected because it satisfies residual assumptions, ensuring reliable interpretation and forecasting. 

Model fitting on the training data resulted in an MSE of 0.0092 and an RMSE of 0.0886, indicating the 

model’s ability to capture temperature patterns with deviations of less than 1°C, which is sufficient for 

practical applications. Forecasting accuracy varies across regions, with North Luwu and Makassar 

exhibit the most accurate forecasts, while Tana Toraja and Maros show slightly lower accuracy, with 

MAPEs of 12.7% and 13.0%, respectively. This research serves as a foundation for developing 

seasonal GSTAR models for other climate datasets, integrating relevant variables, and achieving more 

accurate modeling to support planning across various sectors, such as agricultural planning, disaster 

mitigation, and climate policy development. 
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