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ABSTRACT 

The SIQS (Susceptible, Infective, Quarantine, and Susceptible) non-linear model is used to 

describe the dynamics of infectious diseases, especially optimizing individuals who are quarantined. 

Discretization of the SIQS model using the Runge-Kutta method and its physical interpretation is very 

useful if the model parameters can be estimated. Bayesian Markov Chain Monte Carlo for its numerical 

simulation. After 10,000 iterations, convergent and significant parameters were obtained, namely beta 

= 94.37, beta0 = -10.19, mu = -0.23 and b = 0.5.  
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INTRODUCTION 

In general, the characteristics of infectious diseases have different clinical symptoms according 

to the causative factors of the disease (Mukhsar et al, 2016; Mukhsar et al, 2013; Mukhsar et al 2022). 

Based on clinical manifestations, the characteristics of infectious diseases consist of: 1) The spectrum 

of infectious diseases, 2) Covert infections (without clinical symptoms), 3) Sources of transmission. The 

phenomenon of the spread of infectious diseases can be described through modeling to find out the 

physical interpretation. This physical interpretation is used to describe phenomena that occur in 

everyday life (Allen, 2003; Hethcote, 2000; Mukhsar, 2018). 

One of the models used in the spread of infectious diseases is the SIQS (Susceptible, Infective, 

Quarantine, and Susceptible) model with the characteristic that every individual is susceptible to being 

infected with a disease. Individuals in the infection class can recover through quarantine, but are not 

immune, so they may be re infected and enter the infection class (Bain and Engelhardt, 2000). Bayesian 

Markov Chain Monte Carlo is used for numerical simulations in obtaining the estimation of parameter 

model.    

 

MATERIALS AND METHODS  

Modeling uses Bayesian concepts, for example 𝑥′ = (𝑦1, 𝑦2, … , 𝑦𝑛) is a vector of n cases that 

has distribution 𝑓(𝑥 | 𝜃) and parameter requirements 𝜃′ = (𝜃1, 𝜃2, … , 𝜃𝑘), defined probability 

distribution of 𝑓(𝜃) as 
𝑓(𝑥 | 𝜃)𝑓(𝜃) = 𝑓(𝑥, 𝜃) = 𝑓(𝜃|𝑥)𝑓(𝑥) 

or 

𝑓(𝜃|𝑥) =
𝑓(𝑥|𝜃)𝑓(𝜃)

𝑓(𝑥)
 

with 

𝑓(𝑥) =

{
 

    ∫ 𝑓(𝑥|𝜃)𝑓(𝜃) 𝑑𝜃,   𝜃    continue 

∑𝑓(𝑥|𝜃)𝑓(𝜃) ,    𝜃   descrete

 

  

The likelihood function of the n random variables 𝑥1, 𝑥2, … , 𝑥𝑛 is defined as the joint density 

function. The joint density function 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) considers of the θ. For example, we have n random 

samples 𝑥1, 𝑥2, … , 𝑥𝑛 and probability density function of 𝑓(𝑥𝑖, 𝜃), then the likelihood function is defined 

 𝐿(𝜃)   = 𝑓(𝑥1; 𝜃)𝑓(𝑥2; 𝜃)…  𝑓(𝑥𝑛; 𝜃)  

 =∏𝑓(𝑥𝑖; 𝜃)

𝑛

𝑖=1

  

The Bayesian concept is then used to estimate the parameters of the SIQS model in Figure 1. 

 

 
Figure 1. SIQS schema 

 

From the schematic in Figure 1, the differential equations of the SIQS epidemic model are obtained as 

follows: 
𝑑𝑆

𝑑𝑡
= 𝐴 − 𝛽𝑆𝐼 − 𝑑𝑆 + 𝛾𝐼 + 𝜀𝑄  

 
𝑑𝐼

𝑑𝑡
= [𝛽𝑆 − (𝛾 + 𝛿 + 𝑑 + 𝛼)]𝐼 (1) 
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𝑑𝑄

𝑑𝑡
= 𝛿𝐼 − (𝜀 + 𝑑 + 𝛼)𝑄  

The physical meaning of each symbol in equation (1) is described in Table 1. 

 
Table 1. Physical interpretation of model 1 

Symbol Interpretation 

A the natural birth rate 

𝛽 the rate of transmission from an infected to a susceptible individual 

𝑑 natural mortality rate in susceptible individual 

𝛾 the rate of recovery from infected to susceptible individual without being 

quarantined 

𝜀 the degree of prevention and control of the spread of the disease in susceptible 

individual 

𝛿 infection rate from infected to quarantined individual 

𝛼1 natural mortality rate in infected individual 

𝛼2 natural mortality rates in quarantined individual 

𝑆 the number of individuals who are susceptible to disease 

𝐼 the number of infected individuals who be transmitted the disease to other 

individual 

𝑄 the number of individuals quarantined 

 

Non-linear differential equation (1) is linearized using the Runge-Kutta principle [Box and Tiao, 

1973; Nakamura, 1991],  
 

𝑦𝑛+1
(𝑘)

− 𝑦𝑛 =
ℎ

2
[𝑓 (𝑦𝑛+1

(𝑘−1)
, 𝑡𝑛+1) + 𝑓(𝑦𝑛, 𝑡𝑛)]  

 

with 𝑦𝑛+1
(𝑘)

 is the k-th iteration approximation for 𝑦𝑛+1, and 𝑦𝑛+1
(0)

 is an initial number of 𝑦𝑛+1. Iterations 

are declared convergent when |𝑦𝑛+1
(𝑘)

− 𝑦𝑛+1
(𝑘−1)

| less than the tolerance value set.  The decritization of 

model (1), respectively, is 
𝑆𝑛+1−𝑆𝑛

ℎ
= 𝑆𝑛

′ , 𝑆𝑛
′ = 𝑓(𝑡𝑛), obtained  

 

𝑆𝑡+1 − 𝑆𝑡
ℎ

= 𝐴 − 𝛽𝑆𝑡𝐼𝑡 − 𝑑𝑆𝑡 + 𝛾𝐼𝑡 + 𝜀𝑄𝑡 

                        𝑆𝑡+1 = 𝑆𝑡𝜆1 + ℎ𝐴 + ℎ𝛾𝐼𝑡 + ℎ𝜀𝑄𝑡,  𝜆1 =  1 −  ℎ𝛽𝐼𝑡 − ℎ𝑑  

 

and 
 

 

𝐼𝑡+1 − 𝐼𝑡
ℎ

= [𝛽𝑆𝑡 − (𝛾 + 𝛿 + 𝑑 + 𝛼)]𝐼𝑡 

𝐼𝑡+1 = 𝐼𝑡(1 − ℎ𝛾 − ℎ𝛿 − ℎ𝑑 − ℎ𝛼) + ℎ𝛽𝑆𝑡𝐼𝑡 
 

and 
 

𝑄𝑡+1 − 𝑄𝑡
ℎ

= 𝛿𝐼𝑡 − (𝜀 + 𝑑 + 𝛼)𝑄𝑡 

𝑄𝑡+1 = 𝑄𝑡(1 − ℎ𝜀 − ℎ𝑑 − ℎ𝛼) + ℎ𝛿𝐼𝑡 
𝑄𝑡+1 = 𝑄𝑡𝜆3 + ℎ𝛿𝐼𝑡, 𝜆3 =  1 − ℎ𝜀 − ℎ𝑑 − ℎ𝛼  

 

In the term of 𝑆𝑡+1, let 𝑆𝑡𝜆1 = 𝐺1 in Poisson distribution 𝐺1~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆1), then probability density 

function of 𝐺1 is written as  

 

𝑓(𝐺1; 𝜆1) =
𝑒−𝜆1𝜆1

𝐺1

𝐺1!
=
𝑒−(1− ℎ𝛽𝐼𝑡−ℎ𝑑)( 1 −  ℎ𝛽𝐼𝑡 − ℎ𝑑)

𝐺1

𝐺1!
  

Likewise for 𝐼𝑡+1, let 𝐼𝑡𝜆2 = 𝐺2 , we have Poisson 𝐺2~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆2), then probability density function 

of 𝐺2 is written as  
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𝑓(𝐺2; 𝜆2) =
𝑒−𝜆2𝜆2

𝐺2

𝐺2!
=
𝑒−(1−ℎ𝛾−ℎ𝛿−ℎ𝑑−ℎ𝛼)( 1 − ℎ𝛾 − ℎ𝛿 − ℎ𝑑 − ℎ𝛼)𝐺2

𝐺2!
  

 

For 𝑄𝑡+1, let 𝑄𝑡𝜆3 = 𝐺3 , we have 𝐺3~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆3) and probability density function for 𝐺3 written as 

 

𝑓(𝐺3; 𝜆3) =
𝑒−𝜆3𝜆3

𝐺3

𝐺3!
=
𝑒−(1−ℎ𝜀−ℎ𝑑−ℎ𝛼)( 1 − ℎ𝜀 − ℎ𝑑 − ℎ𝛼)𝐺3

𝐺3!
  

 

The likelihood of 𝑓(𝐺1; 𝜆1) is written as 

 

𝐿𝐺1(𝜆1) =∏𝑓(𝐺1𝑖; 𝜆1)

𝑛

𝑖=1

=∏
𝑒−𝜆1𝜆1

𝐺1𝑖

𝐺1𝑖!

𝑛

𝑖=1

 

=∏
𝑒−(1− ℎ𝛽𝐼𝑡−ℎ𝑑)(1 −  ℎ𝛽𝐼𝑡 − ℎ𝑑)

𝐺1𝑖

𝐺1𝑖!

𝑛

𝑖=1

 

𝑒−(1− ℎ𝛽𝐼𝑡−ℎ𝑑)(1 −  ℎ𝛽𝐼𝑡 − ℎ𝑑)
𝐺12

𝐺12!
× …×

𝑒−(1− ℎ𝛽𝐼𝑡−ℎ𝑑)(1 −  ℎ𝛽𝐼𝑡 − ℎ𝑑)
𝐺1𝑛

𝐺1𝑛!
 

=
𝑒−𝑛(1− ℎ𝛽𝐼𝑡−ℎ𝑑)(1 −  ℎ𝛽𝐼𝑡 − ℎ𝑑)

∑ 𝐺1𝑖
𝑛
𝑖=1

∏ 𝐺1𝑖!
𝑛
𝑖=1

  

 

The likelihood of 𝑓(𝐺2; 𝜆2) written as  

 

𝐿𝐺2(𝜆2) =∏𝑓(𝐺2𝑖; 𝜆2)

𝑛

𝑖=1

=∏
𝑒−𝜆2𝜆2

𝐺2𝑖

𝐺2𝑖!

𝑛

𝑖=1

 

=
𝑒−𝑛(1−ℎ𝛾−ℎ𝛿−ℎ𝑑−ℎ𝛼)(1 − ℎ𝛾 − ℎ𝛿 − ℎ𝑑 − ℎ𝛼)∑ 𝐺2𝑖

𝑛
𝑖=1

∏ 𝐺2𝑖
𝑛
𝑖=1 !

  

 

The likelihood of 𝑓(𝐺3; 𝜆3)written as 

 

𝐿𝐺3(𝜆3) =∏𝑓(𝐺3𝑖; 𝜆3)

𝑛

𝑖=1

=∏
𝑒−𝜆3𝜆3

𝐺3𝑖

𝐺3𝑖!

𝑛

𝑖=1

 

=
𝑒−𝑛(1−ℎ𝜀−ℎ𝑑−ℎ𝛼)(1 − ℎ𝜀 − ℎ𝑑 − ℎ𝛼)∑ 𝐺3𝑖

𝑛
𝑖=1

∏ 𝐺3𝑖
𝑛
𝑖=1 !

  

   

RESULTS AND DISCUSSION 

The prior distribution used is a non-informative prior. In the SIQS model there are several 

parameters used to describe the model, namely α which describes the natural death rate in individuals, 

β which describes the level of transmission from individuals infected with the disease to susceptible 

individuals, δ which describes the level of infection from infected individuals to quarantined individuals, 

γ which describes the recovery rate from infected individuals to susceptible individuals without being 

quarantined and ε which describes the level of prevention and control of the spread of disease to 

susceptible individuals.  

The parameters are assumed to be normally distributed: 

𝑓(𝜃) =

{
 
 

 
 
𝑓(𝛼)~𝑁(0, 𝜎2)

𝑓(𝛽)~𝑁(0, 𝜎2)

𝑓(𝛾)~𝑁(0, 𝜎2)

𝑓(𝛿)~𝑁(0, 𝜎2)

𝑓(𝜀)~𝑁(0, 𝜎2)
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Thus, the probability density function is respectively as, 𝑓(𝛼) =
1

√2𝜋𝜎2
𝑒
−
1

2
(
𝛼𝑖
𝜎
)
2

, 𝑓(𝛽) =
1

√2𝜋𝜎2
𝑒
−
1

2
(
𝛽𝑖
𝜎
)
2

, 

𝑓(𝛾) =
1

√2𝜋𝜎2
𝑒
−
1

2
(
𝛾𝑖
𝜎
)
2

, 𝑓(𝛿) =
1

√2𝜋𝜎2
𝑒
−
1

2
(
𝛿𝑖
𝜎
)
2

, and 𝑓(𝜀) =
1

√2𝜋𝜎2
𝑒
−
1

2
(
𝜀𝑖
𝜎
)
2

. 

 

The prior distribution of f(θ) is the product of all the probability distribution models 
 

𝑓(𝜃) = 𝑓(𝛼) × 𝑓(𝛽) × 𝑓(𝛾) × 𝑓(𝛿) × 𝑓(𝜀) 

𝑓(𝜃) =
1

√2𝜋𝜎2
𝑒
−
1

2
(
𝛼𝑖
𝜎
)
2

×
1

√2𝜋𝜎2
𝑒
−
1

2
(
𝛽𝑖
𝜎
)
2

×
1

√2𝜋𝜎2
𝑒
−
1

2
(
𝛾𝑖
𝜎
)
2

×
1

√2𝜋𝜎2
𝑒
−
1

2
(
𝛿𝑖
𝜎
)
2

×      

1

√2𝜋𝜎2
𝑒
−
1
2
(
𝜀𝑖
𝜎
)
2

 

𝑓(𝜃) =
𝑒
−(
𝛼𝑖
2+𝛽𝑖

2+𝛾𝑖
2+𝛿𝑖

2+𝜀𝑖
2

2𝜎2
)

2𝜋𝜎5√2𝜋
 

 

The posterior distribution is the product of the likelihood function and its prior distribution. Then joint 

posterior for 𝑃(𝜆1; 𝐺1𝑖) = 𝐿𝐺1(𝜆1) × 𝑓(𝜃) is obtained   

𝑃(𝜆1; 𝐺1𝑖) =
𝑒−𝑛(1− ℎ𝛽𝐼𝑡−ℎ𝑑)(1 −  ℎ𝛽𝐼𝑡 − ℎ𝑑)

∑ 𝐺1𝑖
𝑛
𝑖=1

∏ 𝐺1𝑖!
𝑛
𝑖=1

×
𝑒
−(
𝛼𝑖
2+𝛽𝑖

2+𝛾𝑖
2+𝛿𝑖

2+𝜀𝑖
2

2𝜎2
)

2𝜋𝜎5√2𝜋
 

=
𝑒
−𝑛(1− ℎ𝛽𝐼𝑡−ℎ𝑑)−(

𝛼𝑖
2+𝛽𝑖

2+𝛾𝑖
2+𝛿𝑖

2+𝜀𝑖
2

2𝜎2𝑠
)
(1 −  ℎ𝛽𝐼𝑡 − ℎ𝑑)

∑ 𝐺1𝑖
𝑛
𝑖=1

(2𝜋𝜎5√2𝜋)∏ 𝐺1𝑖!
𝑛
𝑖=1

 

=
𝑒
−2𝑛𝜎2(1− ℎ𝛽𝐼𝑡−ℎ𝑑)−(𝛼𝑖

2+𝛽𝑖
2+𝛾𝑖

2+𝛿𝑖
2+𝜀𝑖

2)

2𝜎2 (1 −  ℎ𝛽𝐼𝑡 − ℎ𝑑)
∑ 𝐺1𝑖
𝑛
𝑖=1

(2𝜋𝜎5√2𝜋)∏ 𝐺1𝑖!
𝑛
𝑖=1

 

 

Furthermore for 𝑃(𝜆2; 𝐺2𝑖) = 𝐿𝐺2(𝜆2) × 𝑓(𝜃) is written as  

 

𝑃(𝜆2; 𝐺2𝑖) =
𝑒−𝑛(1−ℎ𝛾−ℎ𝛿−ℎ𝑑−ℎ𝛼)(1 − ℎ𝛾 − ℎ𝛿 − ℎ𝑑 − ℎ𝛼)∑ 𝐺2𝑖

𝑛
𝑖=1

∏ 𝐺2𝑖
𝑛
𝑖=1 !

× 

𝑒
−(
𝛼𝑖
2+𝛽𝑖

2+𝛾𝑖
2+𝛿𝑖

2+𝜀𝑖
2

2𝜎2
)

2𝜋𝜎5√2𝜋
 

=
𝑒
−𝑛(1−ℎ𝛾−ℎ𝛿−ℎ𝑑−ℎ𝛼)−(

𝛼𝑖
2+𝛽𝑖

2+𝛾𝑖
2+𝛿𝑖

2+𝜀𝑖
2

2𝜎2
)
(1 − ℎ𝛾 − ℎ𝛿 − ℎ𝑑 − ℎ𝛼)∑ 𝐺2𝑖

𝑛
𝑖=1

(2𝜋𝜎5√2𝜋)∏ 𝐺2𝑖
𝑛
𝑖=1 !

 

=
𝑒
−2𝑛𝜎2(1−ℎ𝛾−ℎ𝛿−ℎ𝑑−ℎ𝛼)−𝛼𝑖

2+𝛽𝑖
2+𝛾𝑖

2+𝛿𝑖
2+𝜀𝑖

2

2𝜎2 (1 − ℎ𝛾 − ℎ𝛿 − ℎ𝑑 − ℎ𝛼)∑ 𝐺2𝑖
𝑛
𝑖=1

(2𝜋𝜎5√2𝜋)∏ 𝐺2𝑖
𝑛
𝑖=1 !

 

 
 

and we have  𝑃(𝜆3; 𝐺3𝑖) = 𝐿𝐺3(𝜆3) × 𝑓(𝜃) as 
 

𝑃(𝜆3; 𝐺3𝑖) =
𝑒−𝑛(1−ℎ𝜀−ℎ𝑑−ℎ𝛼)(1 − ℎ𝜀 − ℎ𝑑 − ℎ𝛼)∑ 𝐺3𝑖

𝑛
𝑖=1

∏ 𝐺3𝑖
𝑛
𝑖=1 !

×
𝑒
−(
𝛼𝑖
2+𝛽𝑖

2+𝛾𝑖
2+𝛿𝑖

2+𝜀𝑖
2

2𝜎2
)

2𝜋𝜎5√2𝜋
 

=
𝑒
−𝑛(1−ℎ𝜀−ℎ𝑑−ℎ𝛼)−(

𝛼𝑖
2+𝛽𝑖

2+𝛾𝑖
2+𝛿𝑖

2+𝜀𝑖
2

2𝜎2
)
(1 − ℎ𝜀 − ℎ𝑑 − ℎ𝛼)∑ 𝐺3𝑖

𝑛
𝑖=1

(2𝜋𝜎5√2𝜋)∏ 𝐺3𝑖
𝑛
𝑖=1 !
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=
𝑒
−2𝑛𝜎2(1−ℎ𝜀−ℎ𝑑−ℎ𝛼)−𝛼𝑖

2+𝛽𝑖
2+𝛾𝑖

2+𝛿𝑖
2+𝜀𝑖

2

2𝜎2 (1 − ℎ𝜀 − ℎ𝑑 − ℎ𝛼)∑ 𝐺3𝑖
𝑛
𝑖=1

(2𝜋𝜎5√2𝜋)∏ 𝐺3𝑖
𝑛
𝑖=1 !

 

 

Marginal Posterior for 𝑃(𝜆1; 𝐺1𝑖) is 

 

𝑃(𝜆1; 𝐺1𝑖) =
𝑒
−2𝑛𝜎2(1− ℎ𝛽𝐼𝑡−ℎ𝑑)−(𝛼𝑖

2+𝛽𝑖
2+𝛾𝑖

2+𝛿𝑖
2+𝜀𝑖

2)

2𝜎2 (1 −  ℎ𝛽𝐼𝑡 − ℎ𝑑)
∑ 𝐺1𝑖
𝑛
𝑖=1

(2𝜋𝜎5√2𝜋)∏ 𝐺1𝑖!
𝑛
𝑖=1

 

 

Marginal posterior for 𝑃(𝛽; 𝐺1𝑖) = 𝑃(𝜆1; 𝐺1𝑖) is 

 

𝑝(𝛽; 𝐺1𝑖) =
𝑒
−2𝑛𝜎2(1− ℎ𝛽𝐼𝑡−ℎ𝑑)−(𝛼𝑖

2+𝛽𝑖
2+𝛾𝑖

2+𝛿𝑖
2+𝜀𝑖

2)

2𝜎2 (1 −  ℎ𝛽𝐼𝑡 − ℎ𝑑)
∑ 𝐺1𝑖
𝑛
𝑖=1

(2𝜋𝜎5√2𝜋)∏ 𝐺1𝑖!
𝑛
𝑖=1

 

 

Marginal Posterior for  𝑃(𝜆2; 𝐺2𝑖) is obtained 

 

𝑃(𝜆2; 𝐺2𝑖) = 

𝑒
−2𝑛𝜎2(1−ℎ𝛾−ℎ𝛿−ℎ𝑑−ℎ𝛼)−𝛼𝑖

2+𝛽𝑖
2+𝛾𝑖

2+𝛿𝑖
2+𝜀𝑖

2

2𝜎2 (1 − ℎ𝛾 − ℎ𝛿 − ℎ𝑑 − ℎ𝛼)∑ 𝐺2𝑖
𝑛
𝑖=1

(2𝜋𝜎5√2𝜋)∏ 𝐺2𝑖
𝑛
𝑖=1 !

 

 

We use monthly measles data from of Kendari from 10 sub-districts for 2016-2018 to estimate 

model parameters of model (1). Markov Chain Monte Carlo is used to estimate of the parameters. The 

Win BUGS software is implemented for the numerical simulation, as shown  

 
model {  
Sh[1]<-N[1]-I[1]-Q[1]  
I[1]<-0.00252*N[1]  
Q[1]<-0.00252*N[1]  
 
for (i in 1:n) {   
 
#HUMAN POPULATIONS  
S[i]<-(1+mu+beta*Q[i-1])*S[i-1]-newI[i]  
I[i]<-(1-b*Q[i-1])*I[i-1]+newI[i] 
Q[i]<-(1-b*I[i-1])-beta*S[i-1])*Q[i-1] 
newI[i]~dpois(lambdanew[i])  
log(lambdanew[i])<-beta0+Ch[i] 
}  
#CAR prior distribution for random effects Ch. The sum of Ch is always 0  
Ch[1:n]~car.normal(adj[], weights[], num[], varCh)  
# Weights 
for (h in 1:SumNumNeigh){  
weights[h]<-1}  
#Other priors  
beta0~dflat()                                  #Flat prior for the intercept  
varCh~dgamma(0.01,0.01)          #Prior on precision for spatial random effect Ch  
mu<-0.2  
beta<-0.2 
b<-0.2 
}  
DATA 
list(newI=structure(.Data=c(),.Dim=c(10,36)),n=10,T=36,SumNumNeigh=32,  
adj = c(), num = c())  
h=c() 
INITIAL 
List() 

 
Figure 2. Trace plot of parameters model (1) 
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The model parameter estimates at 10,000 iterations have reached convergence, as shown from 

the historical trace plot at constant zones (Figure 3). 
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Figure 3. Trace plot of parameters model (1) 

  

The estimated parameter is significant, as evidenced by the confidence interval between 2.5% and 

97.5% does not contain 0 (Table 2). 

 
Table 2. Estimated parameters of model (1) 

Node mean SD MC error 2.5% median 97.5% Start Sample 

Beta 94.38 63.72 6.36 7.615 83.9 235.1 4001 10000 

beta0 -10.19 0.906 0.09617 -11.43 -10.38 -7.969 4001 10000 

mu -0.231 0.04547 0.003957 0.28 0.2469 0.1269 4001 10000 

b 0.5129 0.03377 0.001566 0.4484 0.5127 0.5779 4001 10000 
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CONCLUSION 

Discretization of the nonlinear model (1) for parameter estimation is purposed. The physical 

interpretation of the nonlinear model (1) is very useful if the mode parameters can be estimated. In this 

study, discretization of the nonlinear model (1) uses the Runge-Kutta method. Bayesian Markov Chain 

Monte Carlo for its numerical simulation. We use monthly measles data from of Kendari from 10 sub-

districts for 2016-2018. After 10,000 iterations, convergent and significant parameters were obtained, 

namely beta = 94.37, beta0 = -10.19, mu = -0.23 and b = 0.5.        
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