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ABSTRACT 

Indonesia faces significant economic challenges, particularly inflation, which affects the economic, 

social, and cultural sectors. High inflation can exacerbate poverty, alter consumption patterns, and 

contribute to social injustice, whereas low inflation can enhance national income and stimulate 

economic activities. Given its fluctuating nature, inflation in Indonesia requires accurate forecasting to 

inform policy-making and economic decisions. This study aims to forecast inflation in Indonesia for the 

next eight months using the Autoregressive Integrated Moving Average (ARIMA) method. Monthly 

inflation data from January 2020 to April 2024 obtained from Bank Indonesia were analyzed. The 

ARIMA model, suitable for short-term forecasting, was selected due to its ability to handle data trends, 

non-stationarity, and noise filtering. The Augmented Dickey-Fuller (ADF) and Kwiatkowski-Phillips-

Schmidt-Shin (KPSS) tests to ensure stationarity. Initial ADF tests showed the presence of a unit root in 

the original data and the first differencing data, but data became stationary after the second 

differencing. The KPSS test confirmed a unit root in the original data and trend stationarity after the 

second and third differencing. Ordinary Least Squares (OLS) regression on the original data revealed 

a significant time trend, indicating deterministic trends. The optimal model identified was ARIMA(0,2,1) 

with AIC=51.81, as it met the criteria for normality, independence, and zero mean of residuals. This 

model effectively forecasts inflation from May to December 2024, which showed an increase with 

inflation values of 3.02, 3.05, 3.07, 3.10, 3.12, 3.14, 3.17, and 3.19. 
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INTRODUCTION 

Indonesia is a developing country that cannot be separated from economic problems like 

inflation. Inflation refers to the broad and ongoing rise in the prices of goods and services, which results 

from a decline in the value of currency over a specific period (Bank Indonesia, 2023). The consequences 

of high inflation can affect economic, social, cultural and other fields, such as increasing poverty levels 

(Mardiatillah et al., 2021), changing people's consumption patterns (Efendi et al., 2020), and giving rise 

to social injustice (Mulyani, 2020). On the other hand, low inflation can increase national income and 

interest in working, saving and investing (Fajri, 2022), thereby improving the economy. 

Inflation is the leading indicator of a region's economic stability. Inflation in Indonesia 

experiences fluctuations from year to year. Inflation can be linked to economic growth. As stated by 

Indonesia's president, Joko Widodo, the country has experienced swift economic recovery, 

demonstrated by consistent quarterly GDP growth since the second quarter of 2021 (Indonesian Cabinet 

Secretariat, 2023), with economic growth from quarterly GDP growth since the second quarter of 2021. 

High economic growth can encourage inflation because aggregate demand exceeds production capacity 

increase. High inflation can affect the increase in prices of goods and services. So, inflation needs to be 

predicted so that policy makers and economic actors can take appropriate steps to control inflation and 

create a conducive economic environment. 

Future inflation figures can be predicted using time series analysis. One time series analysis 

method that can be used to forecast future inflation data is the Autoregressive Integrated Moving 

Average (ARIMA). The ARIMA method can be used to deal with data that shows a linear trend with an 

autoregressive (AR) component (Asrirawan et al., 2022), to deal with non-stationary data with an 

integrated (I) component (Qadrini et al., 2021). It can filter random fluctuations (noise) through the 

moving average (MA) component (Stockhausen & Fogerty, 2007). Apart from that, ARIMA is very 

good for short-term forecasting and generally requires a minimum of 50 to 100 data to fit the model. At 

the same time, it is unsuitable for long-term forecasting (Mahayana et al., 2022). 

Numerous studies have explored inflation dynamics and the application of time series models, 

in forecasting inflation. Sekine (2001) used a moving average (MA) model to forecast inflation in Japan. 

The study calculates the inflation function and forecasts one-year ahead inflation for Japan. Tchakondo 

(2022) proposed a simple autoregressive (AR) model for forecasting inflation in Togo, West Africa, 

finding that an AR(1) model effectively forecasts inflation using annual percentage change data in the 

consumer price index (CPI) from 1967 to 2019. While extensive research covers the application of AR 

and MA in inflation forecasting, a gap still needs to be in integrating these aspects within Indonesia's 

unique economic environment. This study aims to combine autoregressive, integrated and moving 

average processes in bridging this gap by using the ARIMA method to forecast inflation based on past 

periods in Indonesia for the next eight months. 

 

MATERIALS AND METHODS  

The data used is secondary data, namely time series data of the month-to-month inflation rate in 

Indonesia from January 2020 to April 2024, obtained from the Bank Indonesia website, www.bi.go.id. 

The data analysis method in this study used the Autoregressive Integrated Moving Average (ARIMA).  

 

Autoregressive Integrated Moving Average (ARIMA) 

Autoregressive Integrated Moving Average (ARIMA) is a time series analysis method used to 

forecast data that moves in a specific pattern. The ARIMA method consists of three main components, 

namely autoregressive (AR), integrated (I), and moving average (MA). The AR component considers 

the relationship between observed values at the previous and current times. Component I can change 

data into stationary data (average and constant variance over time) by taking the difference between the 

currently and previously observed values. The MA component can calculate the relationship between 

the residual or prediction error at a previous time and the residual value at the current time. In the AR 

model, forecasting is performed using a linear combination of past values, whereas in the MA model, it 

relies on a linear combination of past residuals. 

In general, the ARIMA model is expressed as ARIMA(p, d, q), where p is the autoregressive (AR) 

order, namely the number of lags (lagging levels) of previous data used in the model, d is the integrated 

order, namely the number of differencing transformations required to makes the data stationary, and q 

is the moving average order, namely the number of residuals or previous prediction errors used in the 

model. In ARIMA, some assumptions must be met, namely that the data is stationary regarding the mean 

and variance. The ARIMA model can be expressed in equation form as follows: 
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𝑦𝑡 = 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + … + 𝜙𝑝𝑦𝑡−𝑝 + 𝜃1𝑒𝑡−1 + 𝜃2𝑒𝑡−2 + … + 𝜃𝑞𝑒𝑡−𝑞 + 𝑒𝑡  (1) 

where 𝑦𝑡 is the time series at time t, 𝜙1, 𝜙2, … , 𝜙𝑝 are the autoregressive coefficients (AR), 𝜃1, 𝜃2, … , 𝜃𝑞 

are the moving average coefficients (MA), and 𝑒𝑡  is the residual at time t. The p, d, and q values can be 

selected by exploring and analyzing ACF and PACF to determine which lags are significant and 

included in the ARIMA model. The steps in ARIMA model are as follows: 

1. Identification of data plot. 

2. Stationarity testing using ADF and KPPS tests. If the results of one of these tests show that the 

data is not stationary, then continue to stage 3, whereas if the results show that the data is 

stationary, continue to stage 4. 

3. Differencing until the data are stationary. 

4. Identify temporary models using ACF and PACF plots. 

5. Estimation of ARIMA model parameters. 

6. Residual diagnostics checking. 

7. Forecasting. 

 

Stationarity 

Stationarity is the most essential thing in time series analysis. Times series data is stationary if 

the average does not show a systematic upward or downward trend, the variance does not grow 

significantly, and the covariance (in the multivariate case) remains stable over time. Time series data 

that is not stationary may have a unit root or deterministic trend. Unit root refers to a stochastic process 

in a time series where the impact of a shock (disruption) is permanent and does not disappear over time. 

Data that has a unit root shows a random walk pattern and long-term instability that makes it difficult to 

forecast In contrast, data that does not have a unit root is assumed to have fluctuations around a 

temporary deterministic trend that is not indicative of long-term instability. Methods that can be used to 

test stationary data are the Augmented Dickey-Fuller (ADF) test and the Kwiatkowski-Phillips-Schmidt-

Shin (KPPS) test. 

 

Augmented Dickey-Fuller (ADF) Test 

The Augmented Dickey-Fuller (ADF) test, a statistical tool in time series analysis, is designed to 

test whether a variable has a unit root and the variable is a non-stationary time series or follows a random 

walk equivalently. The Dickey–Fuller (1979) test involves fitting the model: 

𝑦𝑡 = 𝜇 + 𝜌𝑦𝑡−1 + 𝛿𝑡 + 𝑒𝑡 ;   𝑡 = 1, 2, … , 𝑇 (2) 

where 𝑦𝑡 is the value of the time series at time t with 𝑦0 = 0, 𝜇 is the constant, 𝜌 is the coefficient of 

the lagged level of the time series (𝑦𝑡−1), 𝛿 is the coefficient of the time trend, and et~NID(0, 𝜎𝑒
2). 

However, the regression is likely to be disturbed by serial correlation. To control for this, the augmented 

Dickey–Fuller test instead fits the form model (Dickey & Fuller, 1979): 

∆𝑦𝑡 = 𝜇 + 𝜌𝑦𝑡−1 + 𝛿𝑡 + ∑ 𝛽𝑖∆𝑦𝑡−𝑖

𝑘

𝑖=1

+ 𝑒𝑡;   𝑡 = 1, 2, … , 𝑇 (3) 

where k is the lag order of the autoregressive process. The ADF test incorporates three types of linear 

regression models as in Table 1. 
Table 1. Type of ADF Linear Model 

Type Model 
Regression 

Restrictions 

DFuller Option 

1 Linear model with no drift and no linear trend 

(random walk) 
𝛼 = 0, 𝛿 = 0 Noconstant 

2 
Linear model with drift but no linear trend 

(random walk with drift) 
𝛿 = 0 Constant 

3 
Linear model with both drift and linear trend 

(random walk with or without drift) 
(None) Constant and trend 

 

They differ in whether the null hypothesis includes a drift term and whether the regression used to obtain 

the test statistics includes a constant term (𝛼) and time trend (𝛿). The ADF test statistics is defined as: 

𝐷𝐹 =
�̂�

𝑠𝑒(�̂�)
 

(4) 
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where �̂� is an autoregressive coefficient estimation of the ARIMA model(p, d, q) and se(�̂�) is a standard 

error for each type of linear model. Equation (4) can be compared to the corresponding critical value for 

the Dickey–Fuller test. If the calculated test statistic is lower (more negative) than the critical value, the 

null hypothesis of 𝜌 = 0 is rejected, indicating the absence of a unit root. 
 

Kwiatkowski-Phillips-Schmidt-Shin (KPPS) Test 

The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test evaluates the null hypothesis that a series is 

stationary around a deterministic trend (trend-stationary) against the alternative hypothesis that the series 

possesses a unit root (non-stationary). Let 𝑦𝑡 is an observation whose stationarity will be tested. Assume 

the series is expressed as the sum of the deterministic trend, random walk, and stationary error as follows 

(Kwiatkowski et al., 1992): 

𝑦𝑡 = 𝛿𝑡 + 𝑟𝑡 + 𝑒𝑡 ;   𝑡 = 1, 2, … , 𝑇 (5) 

where 𝑟𝑡 = 𝑟𝑡−1 + 𝑢𝑡; 𝑟𝑡 is a random walk with 𝑟0 as a fixed and 𝑢𝑡~𝐼𝐼𝐷(0, 𝜎𝑢
2). The stasionarity 

hypothesis is that the random walk has zero variance or 𝜎𝑢
2 = 0. Since 𝑒𝑡  is assumed to be stationary, 

so the null hypothesis 𝑦𝑡 is trend-stationary. We consider the case of equation (5) by setting 𝛿=0 with 

the null hypothesis 𝑦𝑡 stationary around a level (𝑟0) rather than a trend. The KPPS test statistics is the 

Lagrange Multiplier test defined as (Kwiatkowski et al., 1992): 

𝐿𝑀 = ∑
𝑆𝑡

2

�̂�𝑢
2

𝑇

𝑡=1

 (6) 

where 𝑆𝑡
2 = ∑ 𝑒𝑡

𝑇
𝑡=1 ;  𝑡 = 1, 2, … , 𝑇, �̂�𝑒

2 is the estimate of the error variance of regression (the residual 

sum of squares, divided by T) in equation (6). In the KPPS test, the presence of a unit root is not tested, 

but a trend-stationary is. The average can rise or fall over time, whether in a unit root or trend-stationary 

process. However, when there is a shock, in the trend-stationary process, the time series will converge 

again towards an increasing mean, which is not affected by the shock. In contrast, in the unit root 

process, it has a permanent impact on the mean (does not converge over time). 

 

Differencing 

Differentiating is a method for changing (transforming) time series data to stationary by reducing 

the current value from the previous value. The first differencing mathematical model can be expressed 

in the form of the following equation: 

∆𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 (7) 

If the data is still not stationary after the first differencing, the second differencing can be done 

using the following equation: 

∆2𝑦𝑡 = ∆𝑦𝑡 − ∆𝑦𝑡−1 

       = (𝑦𝑡 − 𝑦𝑡−1) − (𝑦𝑡−1 − 𝑦𝑡−2) 

 

(8) 

Differentiating is an essential technique in time series analysis to achieve stationarity by removing 

trends and seasonal components. Component I (integrated) in ARIMA shows the level of differencing 

required to eliminate unit roots so that the data becomes stationary. Applying differencing can help 

handle complex time series data, build more accurate models, and better forecasts. 

 

Autocorrelation Function (ACF) 

The Autocorrelation Function (ACF) is used to select AR and MA model parameters and identify 

trends or seasonal patterns in the data. ACF can measure the correlation between the observed value of 

a variable at time t (𝑦𝑡) and the observed value at a time (t-1), (t-2), … , (t-lag k) or 𝑦𝑡−𝑘. The ACF value 

at lag k is calculated using the formula: 

𝜌𝑘 =
∑ (𝑦𝑡 − �̅�)(𝑦𝑡−𝑘 − �̅�)𝑇

𝑡=𝑘+1

∑ (𝑦𝑡 − �̅�)2𝑇
𝑡=1

 (9) 

The ACF graph shows the lag on the x-axis and the correlation coefficient on the y-axis. A positive 

or negative ACF value indicates that if the observed value at time t is above or below the average, then 

the value at time t-k is also above or below the average. Lag 0 indicates that the correlation is between 

values simultaneously (ACF at lag 0 is always 1 because it represents the correlation with itself). If there 

is a strong correlation at lag 1, the observed value at time t strongly correlates with the observed value 

at time t-1. If there is a strong correlation at lag 2, the observed value at time t strongly correlates with 

the observed value at time t-2, and so on. When lag k increases, the number of pairs for ACF calculations 

decreases so that ACF cannot be relied on for large lags. 
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Partial Autocorrelation Function (PACF) 

Partial Autocorrelation Function (PACF) is used to select AR model parameters that contain 

several lags. The difference between PACF and ACF is that PACF can determine the direct correlation 

between two observed values of a variable at a certain distance (lag) after eliminating or without 

involving correlation with observed values at several previous lags. The PACF value at lag k is 

calculated using the formula: 

𝜙𝑘𝑘 =
𝜌𝑘 ∑ 𝜙𝑘−1,𝑗𝜌𝑘−𝑗

𝑘−1
𝑗=1

1 − ∑ 𝜙𝑘−1,𝑗
𝑘−1
𝑗=1 𝜌𝑗

 (10) 

where 𝝆𝒌 is autocovariance at lag k, 𝝓𝒌−𝟏,𝒋 is PACF at lag j of the AR(k-1) model. PACF for lag 1 is 

𝝓𝟏𝟏 = 𝝆
𝟏
. The PACF graph shows the partial correlation coefficient on the y-axis and the lag on the x-

axis. Lag 0 in PACF also indicates the correlation between values at the same time (partial correlation 

lag 0 is 1 because a value has a perfect partial correlation with itself). Partial correlation at lag 1 shows 

the correlation between the value at time t and the value at time t-1 after removing the influence of the 

value at time t-2, t-3, and further for the next lags. 

 

Residual Diagnostics 

The residual in a time series model is the remainder after fitting the model. It is the difference 

between the observations and the corresponding fitted values. Residuals are helpful in determining 

whether the model has adequately captured the information in the data. An effective forecasting method 

will generate residuals that exhibit the following characteristics: they are normally distributed, 

independent or uncorrelated, have constant variance, and have zero mean. 

The residuals of the ARIMA model were tested for normality using the Jarque Bera test as follows 

(Jarque & Bera, 1980): 

𝐽𝐵 =
𝑛

6
(𝑆2 +

1

4
(𝐾 − 3)2) (11) 

where 𝑆 =
�̂�3

�̂�3 =
1

𝑛
∑ (𝑦𝑡−�̅�)4𝑇

𝑡=1

(
1

𝑛
∑ (𝑦𝑡−𝑦𝑡̅̅ ̅)2𝑇

𝑡=1 )
2 , 𝐾 =

�̂�4

�̂�4 =
1

𝑛
∑ (𝑦𝑡−�̅�)4𝑇

𝑡=1

(
1

𝑛
∑ (𝑦𝑡−𝑦𝑡̅̅ ̅)2𝑇

𝑡=1 )
2, �̂�3 and �̂�3 are the estimate of the third and 

fourth central moment, is the estimate of the second central moment (variance). The null hypothesis in 

Jarque-Bera test is that the residuals are normally distributed. 

The independence and variance homogeneity of the ARIMA residuals were tested using the 

Ljung-Box test using the following formula (Ljung & Box, 1978): 

𝑄 =
𝑛(𝑛 + 2)

6
∑

𝜌𝑘

1 −
𝑘
𝑛

ℎ

𝑘=1

 (12) 

where n is the sample size, h is the number of lags being tested, 𝜌𝑘is the sample autocorrelation at lag 

k, and k is the lag value. The null hypothesis in the Ljung-Box test for independence of residuals is that 

the residuals are independently distributed, while the null hypothesis for homogeneity of variances is 

that the variance of the residuals is homogeneous. 

The residuals of the ARIMA model also were tested whether they have a mean of zero using t-

statistic test as follows: 

𝑡 =
�̅�

𝑠𝑒/𝑛
 (13) 

where �̅� and 𝑠𝑒 are the sample mean and the sample standard deviation of the residuals. The null 

hypothesis is that the mean of residuals is zero. 

 

Akaike Information Criterion (AIC) 

AIC is a relative measure of the quality of statistical models for a given data set. AIC provides 

information about the model's fit and allows researchers to compare different models. The main goal of 

AIC is to choose a model with the most minor prediction error while considering the number of 

parameters in the model. Generally, the smaller the AIC value, the better the model fits the data. AIC 

combines two essential elements, the model's fit to the data and the model's complexity, by penalizing 

the number of parameters used. The formula for calculating AIC is as follows: 

𝐴𝐼𝐶 = 2𝑘 − 2ln (𝐿) (14) 
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where k is the number of parameters in the model, 𝐿 likelihood of the fitted model. In the context of the 

ARIMA model, likelihood (𝐿) is the value of the likelihood function based on the estimated parameters. 

Log-likelihood (ln(𝐿)) measures how well the model explains the observed data. 

 

RESULTS AND DISCUSSION 

Figure 1 shows a data plot from 52 observations of inflation figures in Indonesia from January 

2020 to April 2024. Based on the plot in Figure 1, it appears that the data tends to be non-stationary or 

allows for a trend (type 3 of ADF).Therefore, it is necessary to carry out ADF and KPPS tests to ensure 

stationarity. 

 

 
Figure 1. Plot Inflation Data 

 

The following are the results of the Augmented Dickey-Fuller (ADF) tests before and after 

differencing to determine the presence of unit roots in each data set. 

 
Table 2. ADF Test Results Before and After Differencing 

Differencing DF p-value Unit Root 

0 -3.13 0.12 Yes 

1 -2.07 0.53 Yes 

2 -4.62 0.01 No 

 

As shown in Table 2, the ADF test result with original data before differencing yielded a p-

value=0.12 > α= 0.05, so the null hypothesis was not rejected, indicating the data has a unit root. This 

is consistent with the data plot exploration results in Figure 1. After performing the first differencing, 

the data still had a unit root with a p-value=0.53 > α=0.05, so the null hypothesis was not rejected. 

Furthermore, after performing the second differencing, a p-value=0.01 < α=0.05 was obtained, so the 

null hypothesis was rejected, indicating that the data did not have a unit root. 

To determine whether the null hypothesis of the KPPS test involves stationary at the level or 

trend, we must fit a linear model using OLS (Ordinary Least Square) to the original data and test the 

stationarity of the residuals. 
Table 3. OLS Regression Results 

 *The p-value is significant at 𝛼=5% 
 

The results of the OLS regression in Table 3 show that the coefficient of the time trend has a p-

value=0.0001456 < α=0.05, thus rejecting the null hypothesis and indicating that a deterministic trend 

is present. This means the data are stationary around a trend rather than a level. 

 
Table 4. KPPS Test Results 

Differencing LM p-value Decision 

0 0.16 0.04* Unit root (non-stationary) 

1 0.14 0.05 Trend-stationary 

2 0.04 0.10 Trend-stationary 
*The p-value is significant at 𝛼=5% 

Variable Estimate Standard Error t-value p-value 

Intercept 1.6500 0.3408 4.8410 1.28e-05* 

Time 0.0460 0.0112 4.1130 1.456e-4* 
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According to Table 4, KPPS test result with original data before differencing yielded a p-

value=0.04 < α= 0.05, so the null hypothesis was rejected, indicating that the data has a unit root (non-

stationary). This is also consistent with the data plot exploration results in Figure 1. After performing the 

first differencing (d=1), the data has a trend stationary with a p-value=α=0.05, so the null hypothesis 

was not rejected. Furthermore, after performing the second differencing (d=2), a p-value=0.10 > α=0.05 

was obtained, so the null hypothesis was not rejected, indicating that the data have a trend-stationary. 

Next, it is necessary to check the stationarity of the model residuals. 

 
Table 5. KPSS Test Results of OLS Regression Residuals 

 *The p-value is significant at 𝛼=5% 
 

The KPPS results on the OLS regression residuals in Table 5 show that p-value=0.1 > α=0.05, so 

the null hypothesis is not rejected, which means that the residuals have a deterministic trend. In other 

words, the data is predictable, and fluctuations around the trend are temporary or do not indicate long-

term instability. 

  
Figure 2. Plot ACF and PACF 

 

Figure 2 shows that the ACF terms fall below our significance level at lag 1, suggesting that we 

consider q=1. Additionally, the PACF shows significance at lag 1, crossing the significance threshold 

(indicated by the dotted blue line). Based on this, we can determine that p=2 for our ARIMA model. 

Therefore, the potential ARIMA models for inflation are ARIMA(1,2,0), ARIMA(0,2,1), and 

ARIMA(1,2,1). 
Table 6. Estimation dan Residual Diagnostics of ARIMA model 

Model 
Significant 

Parameter 
AIC 

Residual 

Normality 

Residual 

Independence 

Residual 

Variance 

Homogeny 

Residual 

Zero Mean 

ARIMA(1,2,0) AR(1)* 60.2 Yes No No Yes 

ARIMA(0,2,1) MA(1)* 51.81 Yes Yes No Yes 

ARIMA(1,2,1) AR(1) 

MA(1)* 
50.93 Yes Yes No Yes 

*The p-value is significant at 𝛼=5% 
 

Based on the estimation and residual diagnostics of ARIMA model in Table 6, the model in which 

all parameters are significant are ARIMA (1,2,0) and ARIMA(0,2,1). Even though the AIC=50.93 in 

ARIMA(1,2,1) is the smallest, the AR(1) parameter is not significant. The residual normality of the three 

models is normally distributed. However, from the independence test, only ARIMA(1,2,1) and 

ARIMA(0,2,1) have independent residuals. If residuals exhibit correlations, it indicates that there is 

additional information within the residuals that should be utilized in generating forecasts. The three 

residuals of the model do not have a constant variance. These models that do not satisfy this property 

cannot necessarily be improved. We can usually do little to ensure that the residuals have constant 

variance. All three model residuals have a mean of zero, so the estimates are closer to unbiased. 

Based on the identification, estimation, and diagnostic checking results, the best model for 

forecasting inflation is ARIMA (0,2,1) with AIC=51.81. Table 7 shows the inflation forecasting results 

for May to December 2024, which have a increasing pattern, which are then depicted in Figure 3. 
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Table 7. Forcasting Results 

Month and Year Forecast (%) 

May 2024 3.02 

June 2024 3.05 

July 2024 3.07 

August 2024 3.10 

September 2024 3.12 

October 2024 3.14 

November 2024 3.17 

December 2024 3.19 

 
Figure 3. Inflation Forecast Results for May to December 2024 

 

CONCLUSION 

Analyzing inflation data from January 2020 to April 2024 in Indonesia reveals insights into its 

behaviour over time. Initially showing signs of non-stationarity or a discernible trend, the ADF and 

KPPS tests were conducted to confirm stationarity. The ADF tests initially indicated non-rejection of 

the unit root hypothesis, which was consistent with the observed trend. After differencing, the unit root 

hypothesis was rejected, suggesting stationarity without a unit root. OLS regression further confirmed 

the presence of a deterministic trend, indicating stationary data around a trend rather than a level. 

Parameter significance tests identified ARIMA(0,2,1) as the most effective model whose residuals are 

normally distributed, uncorrelated, and have zero mean. This model was used to forecast inflation for 

May to December 2024, highlighting its predictive capabilities in capturing future inflation trends. 
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