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ABSTRACT 

The Consumer Price Index (CPI) is a measure of development success and inflation rates in a country. 

The CPI is often used to assess the general rate of increase in the prices of goods and services and as a 

consideration in adjusting salaries, wages, pensions, and other contracts. Therefore, forecasting the 

CPI is very useful for formulating future policies, including in the health sector. This study aims to 

create a CPI forecasting model for the health sector in East Java using the ARIMA-GARCH model, 

namely the integration of the ARIMA model with the GARCH model. The data used were monthly CPI 

data from January 2020 to December 2023 obtained from the Central Statistics Agency (BPS). The 

ARIMA model is used to capture long-term trends, while the GARCH model is applied to handle residual 

heteroscedasticity. The identification results showed that the best ARIMA model is ARIMA(2, 2, 2) with 

all coefficients statistically significant but heteroscedasticity occurs in the therefore, GARCH modeling 

is applied to the residuals. Based on the lowest Akaike Information Criterion (AIC) value of 8.342491, 

the GARCH(1,0) model was selected as the best model. The combined ARIMA(2,2,2)–GARCH(1,0) 

model produced an AIC value of 18.583 and an RMSE of 0.251383. Residual diagnostic tests indicated 

that the resulting model meets the assumptions of normal distribution and homogeneity, and there is no 

significant autocorrelation. The results of this study are expected to contribute to providing predictive 

information that can be used by the government as a reference in formulating health sector policies, 

particularly regarding managing the prices of goods and services to maintain economic stability in East 

Java.  
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INTRODUCTION 

The Consumer Price Index (CPI) is a key economic indicator that provides information on the 

price movements of goods and services paid by consumers and is often used to measure a country's 

inflation rate. The success of a region's development can be assessed using appropriate measuring tools, 

such as the price index, which serves as a barometer of the overall economic condition. The quantity, 

type, and quality of goods and services, as well as their weighting within the CPI, are determined based 

on the Cost of Living Survey conducted by the Central Statistics Agency (BPS). The CPI is often used 

to measure a country's inflation rate and is used as a consideration in adjusting salaries, wages, pensions, 

and other contracts. Through the price index, leaders or managers can manage existing data to 

understand the development of their businesses or activities, such as identifying factors that influence 

economic progress, measuring the level of economic progress, or as a tool for the government in 

determining pricing policy (increasing or decreasing prices) (Dimashanti & Sugiman, 2021). 

CPI is an index that reflects the average price of goods and services consumed by households. 

This index compares prices in a given month with the previous month, with the previous month's prices 

used as a reference for the base year in calculating the CPI. The CPI is often used to assess the general 

level of price increases for goods and services that constitute basic necessities for a country's population, 

as well as to consider adjustments to salaries, wages, pensions, and other contracts (Djami & Nanlohy, 

2022). The CPI consists of several groups/sectors, namely (1) foodstuffs (2) processed foods, beverages, 

cigarettes and tobacco (3) housing, water, electricity, gas and fuel (4) clothing (5) health (6) education, 

recreation and sports (7) transport, communication and financial services. The consumer price index 

according to the health group needs to be discussed because health is a very important aspect for 

humanity in the continuation of daily routines (Wanto & Windarto, 2017). 

Based on this, CPI forecasting is very useful for formulating future policies, including in the 

health sector. Forecasting is an analytical process that uses historical data objectively to predict future 

conditions. Forecasting aims to describe events or circumstances that may occur in the future. This 

process is carried out by utilizing past data and mathematical calculations to generate projections of 

future events (Islamy, Anas, & Muhammad, 2024). CPI forecasting plays a crucial role, providing 

benefits such as understanding the rate of income growth and the prices of goods and services in a region. 

Furthermore, CPI forecasting can also support the government in formulating economic policies to 

address future inflation (Ristyasari & Ahdika, 2024).  

CPI data is a time series that can be analyzed using time series models such as the 

Autoregressive Integrated Moving Average (ARIMA), which assumes constant variance. However, this 

assumption is not always met in CPI data because its variance can change due to economic fluctuations, 

giving rise to heteroscedasticity effects that can be addressed with the Generalized Autoregressive 

Conditional Heteroscedasticity (GARCH) model. The GARCH model is a development of the ARCH 

model. The basic concept of GARCH is that the variance is not only affected by the residuals that have 

occurred, but also by the lag of the conditional variance itself. Although the ARIMA model excels at 

analyzing long-term trends, and the GARCH model is effective in handling short-term volatility 

fluctuations, applying either model alone is often insufficient to fully capture the characteristics of the 

data. Therefore, a combination of ARIMA and GARCH models is used to integrate the advantages of 

both, resulting in more accurate CPI predictions. ARIMA is used to model data, while GARCH is used 

to model residuals from ARIMA. The integrated form of the two is ARIMA-GARCH, which is by 

adding the two models.  (Fadhilah, Parmikanti, & Ruchjana, 2024). 

Previous research in 2023 used the ARIMA-GARCH model to forecast the stock price of PT 

Adhi Karya (Persero) Tbk (ADHI.JK). The results showed that the ARIMA residuals contained 

heteroscedasticity, so GARCH modeling was continued. The best hybrid model was ARIMA (1,1,1)-

GARCH(1,1) (Talumewo, Nainggolan, & Langi, 2023). In the following year, the ARIMA-GARCH 

model was used to forecast stock returns in the banking subsector. The best model from the study was 

ARIMA(2,0,2)-GARCH(1,1) with an RMSE value of 0.01628 (Fadhilah, Parmikanti, & Ruchjana, 

2024). In 2024, a study on forecasting inflation rates in Indonesia used the ARIMA-GARCH model 

based on Kalman filter optimization. The results showed that the best model obtained was the ARIMA 

(0,1,1) – GARCH (1,1) model (Intan, Haris, & Arum, 2024). In the same year, another study on the 

application of the ARIMA model to forecast global gold prices showed that the data used contained 

elements of heteroscedasticity, so a hybrid ARIMA-GARCH model was used. Of several tentative 

models, ARIMA(6,1,6)-GARCH(6,0) had the smallest AIC value and was therefore selected as the best 

model. This model produced a MAPE value of 0.647981% (Beeg, Paendong, & Manahonas, 2024).  
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Based on the description above, the purpose of this study is to forecast the CPI in the 

health sector in East Java using the ARIMA-GARCH model. The results of this study are 

expected to assist the government and related parties in determining policies related to the CPI 

in the health sector in East Java province. 

 
MATERIALS AND METHODS  

Research Data 

The data in this study are secondary data, namely CPI data according to health groups in East 

Java from January 2020 to December 2023. The data were obtained from the Central Statistics Agency 

(BPS) of East Java Province. 

 

Data Analysis 

Data Stationarity Test 

Data stationarity test was performed using Augmented Dicky Fuller (ADF) (Mutiara, Fitriyati and 

Mahmudi 2023). The ADF test hypothesis is as follows (Yusrini, et al. 2024): 

𝐻0  ∶   𝛽̂ = 0 (a unit root is detected in the data or the data is not stationary) 

𝐻1  ∶  𝛽̂ < 0 (there is no unit root in the data or the data is stationary) 

Test statistics: 

𝐴𝐷𝐹 = |
𝛽̂

𝑠𝑒(𝛽̂)
|                       (1) 

with 𝐴𝐷𝐹 is ADF test value, 𝛽̂ ia a sstimated value of parameter 𝛽, and 𝑠𝑒(𝛽̂) is standard error 

of the estimated value of the parameter 𝛽. the decision making criteria are  𝐻0  is rejected if the statistic 

from the ADF test has a smaller value than the critical region. 

 

ARIMA Modeling 

ARIMA is one of the time series-based forecasting methods that utilizes the correlation 

relationship between data in the time series. This method was first intensively developed by George Box 

and Gwilym Jenkins in 1970. The ARIMA model is based on the principle that the value of the current 

observation (𝑍𝑡) depends on one or more previous observations (𝑍𝑡−𝑘). ARIMA model are represented 

by the notation ARIMA(p,d,q). 

The parameter p indicates the number of lags in the autoregressive process, d indicates the level 

of differencing required to make the data stationary, and q indicates the number of lags in the moving 

average process. If d = 0 and q = 0, then the model includes only the autoregressive process and is 

referred to as AR(p). Conversely, if d = 0 and p = 0, then the model involves only the moving average 

process and is referred to as MA(q). However, if all three components are used, the model is called 

autoregressive integrated moving average (ARIMA(p,d,q))(Djami dan Nanlohy 2022). 

The general form of the ARIMA model can be expressed in the following equation (Landa, 

Hatidja and Langi 2024): 

𝑍𝑡 = (1 − 𝜙1)𝑍𝑡−1 + (𝜙1 − 𝜙2)𝑍𝑡−2 + ⋯ + (𝜙𝑝 − 𝜙𝑝−1)𝑍𝑡−𝑝 

+𝜃0 − 𝜃1𝛾𝑡−1 − 𝜃2𝛾𝑡−2 − ⋯ − 𝜃𝑞𝛾𝑡−𝑞                                                                                    (2) 

where  𝑍𝑡  is data in period 𝑡,  𝛾𝑡−1 is error in period 𝑡, 𝜙1, 𝜙2, ⋯ , 𝜙𝑝−1 are AR model parameters, and 

𝜃0, 𝜃1, ⋯ , 𝜃𝑞 are MA model parameters 

           

Parameter Estimation and Significance Testing 

Parameter estimation is used to obtain the coefficient values of the ARIMA (p,d,q) model ('Aina, 

Hendikawati and Walid 2019). Parameter estimation is performed using the Ordinary Least Squares 

(OLS) method. The OLS method aims to minimize the sum of the squares of the differences between 

the actual values and the values predicted by the model, thus obtaining parameters that produce the 

smallest error. Formula of OLS method presented by 

𝛽̂ = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 

The significance test has the aim of seeing the significance of the model parameters with the 

hypothesis (Yusrini, et al. 2024): 

𝐻0  ∶  𝛽 = 0 insignificant parameter 

𝐻1  ∶  𝛽 ≠ 0 significant parameters 
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Test statistics: 

𝑡𝑐𝑜𝑢𝑛𝑡 =  |
𝜙̂

𝑆𝐸(𝜙̂)
|          (3) 

If |𝑡𝑐𝑜𝑢𝑛𝑡| > 𝑡𝑡𝑎𝑏𝑙𝑒 then reject 𝐻0, where 𝑡𝑡𝑎𝑏𝑙𝑒 is found using the 𝑡 distribution table with 𝑛 − 𝑘 

degrees of freedom and 𝑎/2 significance level 

 

Diagnostic Check (White noise test) 

 In this test, it is carried out using the Ljung-Box test. The Ljung-Box formula is expressed as 

follows: 

𝑄 = 𝑛(𝑛 + 2) ∑(𝑛 − 𝑘)−1𝜌̂𝑘
2

𝐾

𝑘=1

       

Where 𝑛 is the number of observations in the time series, 𝐾 is the number of lags tested, 𝑘 is the lag 

difference and 𝜌̂𝑘is the value of the autocorrelation coefficient at lag−𝑘. 
 

The hypothesis formulation used is: 

𝐻0:residuals are not autocorrelated 

𝐻1:residuals are autocorrelated 
 

The decision criteria used are reject 𝐻0 if 𝐻0 > 𝑥𝛼,𝑑𝑏
2 . Do not reject 𝐻0if 𝐻0 > 𝑥𝛼,𝑑𝑏

2 with degree of 

freedom table (𝑑𝑏) = 𝐾 − 𝑝 or 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 5% (Anisa, Yudistira, & Yulianto, 2015). 

 

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) 

Autoregressive Conditional Heteroscedastic (ARCH) Model The ARCH model is an 

autoregressive model used to overcome non-constant errors in time series data (Kustiara, Nur and Utami 

2020). The ARCH model was first introduced by Engle in 1982. The error variance (𝜎𝑡
2) in the ARCH 

model is strongly influenced by the error in the previous period (𝜀𝑡−1
2 ). The general form of the ARCH(p) 

model is (Beeg, Paendong and Manahonas 2024): 

𝜎𝑡
2 = 𝑎0 + 𝑎1𝜀𝑡−1

2 + ⋯ + 𝑎𝑝𝜀𝑡−1
2        (4) 

A model designed to overcome the problem of heteroscedasticity was first introduced by Engle 

in 1982 with the ARCH model. In 1986, Bollorsev developed the GARCH (Generalized Autoregressive 

Conditional Heteroscedasticity) model as an extension of the ARCH model. The basic concept of 

GARCH is that the variance is not only affected by the residuals that have occurred, but also by the lag 

of the conditional variance itself. Bollerslev (1986) recommends the GARCH (p,q) model as a better 

model with the following formulation (Beeg, Paendong and Manahonas 2024): 

𝜎𝑡
2 = 𝑎0 + 𝑎1𝜎𝑡−1

2 + ⋯ + 𝑎𝑝𝜎𝑡−𝑝
2 + 𝑎1𝜀𝑡−1

2 + ⋯ + 𝑎𝑞𝜀𝑡−𝑞
2     (5) 

The ARCH (p) model is a GARCH (p,q) model with order 𝑞 = 0. 

 

Forecasting Accuracy 

The accuracy of a forecasting method can be seen from the RMSE or Root Mean Square Error 

(RMSE) value. The size of the forecasting error can be calculated using the RMSE value. The RMSE 

value can be calculated using the following formula: 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝑟𝑡 −𝑁

𝑖=1 𝑟𝑡̂)2          (6) 

with: 

𝑁 = Observation value in period t 

𝑟𝑡̂ = Forecasting value in period t 

𝑟𝑡 = Number of data 
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RESULTS AND DISCUSSION 

Data Stationarity Test 

The data in this study are CPI data according to health groups in East Java from January 2020 to 

December 2023. The data is divided into two parts: training data and testing data. The training data, 

which is CPI data from January 2020 to December 2022, is used to build the model. The testing data, 

which is CPI data for 2023, is used to evaluate the model. CPI data in the health sector in East Java from 

2020 to 2023 can be seen in Figure 1. 

Figure 1. CPI Data Plot 

 

Figure 1 shows that the CPI data plot for the health sector in East Java province continued to 

increase from 2020 to 2023. Therefore, this data pattern is considered an upward trend. The graph in 

Figure 1 shows a consistent upward trend from the beginning to the end of the observation period. The 

health sector CPI rose from around 102 at the beginning of the period to nearly 115 at the end. This 

indicates a sustained increase in prices for goods and services in the health sector. 

The first step in modeling time series data is to test the stationarity of the data. In this study, the 

Augmented Dickey-Fuller test is used, with data said to be stationary if the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 <  (0.05), then 

reject 𝐻0 or stationary data. However, if the ADF test results show that the data is not stationary then a 

differencing process is required. The ADF test results are presented in the following table: 
 

                                                         Table 1. ADF Test Results 

Data 𝑝 − 𝑣𝑎𝑙𝑢𝑒 Description 

Before differencing 0.4289 Non-stationary 

Differencing 1 0.3863 Non-stationary 

Differencing 2 0.01 Stationary 

 

Table 1 shows that before differencing, the p-value obtained is 0.4289 >  0.05, indicating that 

the data is not stationary so that a differencing process is needed. At first differencing, the p-value 

obtained is 0.3863 >  0.05 which indicates that the data is not stationary so second differencing is 

needed. In differencing 2, the p-value is 0.01 <  (0.05), which indicates that the data has been 

stationary. 

 

ARIMA Model Identification 

After detecting the problem of data stationarity and differencing, the next step is to identify the 

ARIMA model for the health sector CPI data in East Java. Determining the order of the ARIMA model 

is done by comparing several models based on the Akaike Information Criterion (AIC) value. The AIC 

value reflects the balance between the complexity of the model and the model's ability to explain the 

data; the model with the lowest AIC value is considered the most optimal. The following models and 

the resulting AIC values can be observed in Table 2: 
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Table 2. Model and resulting AIC values 

Model AIC 

ARIMA(1,2,1) 61.45186 

ARIMA(1,2,2) 35.4253 

ARIMA(2,2,2) 28.82365 

ARIMA(2,2,1) 46.72481 

 

From the AIC results of each model, it is found that the best model with the smallest AIC value 

is the ARIMA (2,2,2) models. 

 

Parameter Estimation and Significance Test of Model Parameters 

After obtaining the best model, the next step is to estimate the parameters and test the significance 

of the model parameters. The purpose of this step is to observe whether the data is significantly 

influenced or not. The parameter estimation results can be observed in Table 3 below: 
 

                                Table 3. Parameter estimation results of ARIMA (2,2,2) model 

Model Estimate Coefisient 𝑝 − 𝑣𝑎𝑙𝑢𝑒 Description 

ARIMA (2,2,2) ∅1 -0.5146 0.0001626 Significant 

 ∅2 -0.4233 0.0015052 Significant 

 𝜃1 -1.9842 < 2.2e-16 Significant 

 𝜃2 1.0000 < 2.2e-16 Significant 
 

 Based on Table 3, it can be seen that all parameters have a significant effect because the p-value 

is less than 0.05. The ARIMA (2,2,2) model can be written as the equation (7) 
 

𝑍𝑡 = −0.5146𝑍𝑡−1 − 0.4233𝑍𝑡−2 − 1.9842𝑎𝑡−1 + 1𝑎𝑡−2                                (7) 
 

Based on equation (7), it can be seen that the CPI in periods 𝑡 − 1 and 𝑡 − 2 has a negative 

influence on the CPI value in period 𝑡. Besides that, the residual in period 𝑡 − 1 also has a negative 

influence on the CPI value for period 𝑡, while the residual for period 𝑡 − 2 has a positive influence. If 

the CPI for period 𝑡 − 1 increases by one unit and the variables in the other parameters are constant, the 

CPI for period 𝑡 will decrease by 0.5146 times. If the CPI for period 𝑡 − 2 increases by one unit and the 

variables in the other parameters are constant, the CPI for period 𝑡 will decrease by 0.4233 times. If the 

residual of period 𝑡 − 1 increases by one unit and the variables in the other parameters are constant, the 

CPI of period 𝑡 will decrease by 1.9842 times. If the residual of period 𝑡 − 2 increases by one unit and 

the variables in the other parameters are constant, then the CPI of period 𝑡 will increase by 1 time. 

 

White Noise Test 

The next stage in ARIMA modeling is the white noise test. This stage is carried out to observe 

that the model has residuals that are random (white noise) so that the model is able to explain the data 

well. The white noise test results using the Ljung-Box test are as follows: 

 
                                               Table 4. White noise test results 

Lags Statistics df p-value 

5 5.172824 1 0.02294289 

10 14.701035 6 0.02271389 

15 21.381126 11 0.02963076 

20 27.917981 16 0.03234024 

25 33.187158 21 0.04418257 

30 37.850712 26 0.06252057 

 

Tabel 4 show that 𝑝-value smaller than 0.05 indicates that there are some patterns in the residuals 

that are not completely white noise. However, at higher lags (lag 30), 𝑝 > 0.05, which indicates the 

residual pattern is getting closer to white noise. However, the white noise test results show that the 

residuals are not completely random at some low lags. This could be an indication that the model can 

still be improved further, so it is continued with the GARCH modelling.  
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GARCH Modeling 

The ARCH (p) model is a GARCH (p,q) model with order 𝑞 = 0. The GARCH modeling process 

begins by testing several model configurations to determine which one is the best based on the AIC 

value. The tested models include GARCH(1,0), GARCH(2,0), GARCH(3,0), GARCH(1,1), 

GARCH(1,2), and GARCH(1,3). The AIC value of the GARCH model can be seen in Table 5 
 

Table 5. AIC Value of GARCH Model 

Model AIC 

GARCH (1,0) 8.342491 

GARCH (2,0) 11.27679 

GARCH (3,0) 13.11141 

GARCH (1,1) 10.34267 

GARCH (1,2) 13.29782 

GARCH (1,3) 15.06944 
 

From the calculation results, the GARCH (1,0) model has the smallest AIC value, which is 

8.342491. Therefore, this model is chosen as the most suitable for further analysis. The parameter 

estimation results and significance test of the GARCH (1,0) model can be observed in Table 6 below: 
 

Table 1. Estimation of ARCH (1) Model 

Model Parameter Estimation P-value Description 

GARCH (1,0) 𝑎0 0.06183 0.000822 Significant 

 𝑎1 0.04286 0.779255 Insignificant 

Based on the estimation results, the intercept (𝑎0) has a value of 0.06183 and is statistically 

significant with a p value of 0.000822 (𝑝 <  0.001). Meanwhile, the ARCH coefficient of 0.04286 is 

not significant with a p value of 0.779255 (𝑝 >  0.05). These results indicate that although the 

intercept has a significant influence, the contribution of previous volatility to current changes is 

relatively small, so the GARCH model obtained is 𝜎𝑡
2 = 0.06183 + 0.04286𝜎𝑡−1

2 . 

Residual diagnostic tests were conducted to ensure the suitability of the GARCH(1,0) model. The 

Jarque-Bera test gives a p value of 0.8268, indicating that the residuals are normally distributed. In 

addition, the Box-Ljung test on the squared residuals yielded a p value of 0.945, confirming the absence 

of significant autocorrelation. Thus, the GARCH(1,0) model is considered capable of adequately 

describing the volatility pattern in the data. 

The final model value obtained is ARIMA(2,2,2)-GARCH (1,0). 

 

𝑍𝑡 =  −0.5146𝑍𝑡−1 − 0,4233𝑍𝑡−2 − 1,9842𝑎𝑡−1 + 1𝑎𝑡−2  − 0.06183𝜎𝑡−1
2 − 0.04286𝜎𝑡−2

2  

 

From this model, the RMSE value is 0.251383. Based on the RMSE value, it can be said that this 

model is included in the category of good enough to forecast the CPI by health group in East Java. 

 

CONCLUSION 

This study uses the ARIMA-GARCH method to forecast the Consumer Price Index (CPI) for the 

health sector in East Java. The best model identified is ARIMA(2,2,2)-GARCH(1,0) presented by 
 

𝑍𝑡 =  −0.5146𝑍𝑡−1 − 0,4233𝑍𝑡−2 − 1,9842𝑎𝑡−1 + 1𝑎𝑡−2  − 0.06183𝜎𝑡−1
2 − 0.04286𝜎𝑡−2

2  

 

This model has an AIC value of 18,583 and RMSE of 0.251383. Based on the RMSE value 

obtained, it can be concluded that this model is quite good in predicting the CPI in the health group in 

East Java. 
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