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ABSTRACT 

Pension programs are designed to provide financial security after retirement, requiring accurate 

actuarial valuation to ensure funding adequacy. A key determinant of actuarial liabilities is the interest 

rate assumption, which directly affects the present value of future pension obligations and the level of 

unfunded actuarial liability (UAL). Despite its importance, most pension valuation studies rely on 

deterministic interest rates, while empirical evidence on the use of stochastic interest rate models 

combined with robust parameter estimation techniques remains limited. This study addresses this gap 

by evaluating actuarial liability adequacy using the Frozen Initial Liability (FIL) method under a 

stochastic interest rate framework. The Hull–White one-factor model is employed to capture the 

dynamic behavior of interest rates, with parameters estimated using Ordinary Least Squares (OLS) and 

the Jackknife method. The Jackknife approach is introduced to improve estimation robustness, 

particularly in the presence of small samples and influential observations. Empirical results show that 

the Jackknife method produces an average interest rate of 0.0678 with a Mean Absolute Percentage 

Error (MAPE) of 24.4%, while OLS yields an average rate of 0.0665 with a MAPE of 26.1%. Both 

approaches result in negative UAL values, indicating a fully funded pension scheme with a surplus 

position. However, the surplus obtained under the Jackknife estimation is lower despite the higher 

interest rate estimate, suggesting an inverse relationship between interest rates and surplus levels within 

the FIL framework. 
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INTRODUCTION 

Retirement is a phase in which individuals cease working upon reaching the statutory retirement 

age or by personal decision. At this stage, individuals are entitled to pension benefits or severance 

payments to ensure financial security in old age (Lesmana, 2015). Pension fund programs represent 

long-term financial commitments by employers in recognizing employees’ contributions throughout 

their working lives. In Indonesia, pension fund management is conducted by both public and private 

institutions, including PT Jamsostek, PT Asabri, and PT TASPEN, under the supervision of BPJS 

Ketenagakerjaan (Ahmad, Alhusain, & Silalahi, 2015). As the number of retirees continues to increase, 

pension fund managers face growing challenges in ensuring that sufficient funds are available to meet 

long-term benefit obligations. 

A pension fund functions as a long-term savings mechanism that provides income security after 

retirement. Pension benefits are accumulated during the employment period and remain payable even in 

cases of disability or death prior to retirement. While pension schemes enhance job security and 

employee motivation, inadequate funding may lead to deficits that threaten the sustainability of benefit 

payments (Marwa, 2020). Consequently, pension obligations must be recognized as actuarial liabilities 

that should be fully funded at retirement. Any shortfall between available assets and actuarial liabilities, 

referred to as Unfunded Actuarial Liability (UAL), poses a significant financial risk and highlights the 

importance of accurate actuarial valuation and funding strategies. This study focuses on the problem of 

measuring and managing UAL within defined-benefit pension schemes under uncertain interest rate 

conditions. 

Various actuarial funding methods have been developed to address pension valuation, 

particularly for group-based pension programs. One widely used approach is the Frozen Initial Liability 

(FIL) method, which is derived from the Entry Age Normal (EAN) method and assumes constant normal 

contributions for all participants regardless of retirement age. Previous studies have applied the FIL 

method primarily under deterministic interest rate assumptions, which may fail to capture the inherent 

volatility of financial markets. To address this limitation, stochastic interest rate models have been 

introduced, among which the Hull-White model has gained prominence due to its ability to reflect mean 

reversion and align with the observed term structure of interest rates (Alfikri, Satyahadewi, & Perdana, 

2020). 

In terms of the state of the art, existing research on stochastic interest rate modeling has largely 

concentrated on parameter estimation and model behavior, often employing Ordinary Least Squares 

(OLS) as the primary estimation technique. Some studies have introduced resampling-based methods 

such as the Jackknife to improve robustness and reduce sensitivity to outliers (Ariani, Nasution, & 

Yuniarti, 2017). Empirical evidence suggests that the Jackknife method can produce lower volatility 

estimates in the Cox–Ingersoll–Ross (CIR) model (Yunizar, 2019), while comparable parameter 

behavior has been observed for the Hull-White model (Choliqa, 2022). However, these studies 

predominantly evaluate estimation performance in isolation and do not extend the analysis to actuarial 

funding outcomes. 

What remains insufficiently explored is how different parameter estimation methods within 

stochastic interest rate models influence actuarial liability calculations and, in particular, the magnitude 

and dynamics of Unfunded Actuarial Liability under specific pension funding methods such as FIL. The 

direct linkage between interest rate estimation accuracy and pension funding adequacy has not been 

explicitly addressed in prior studies, leaving pension fund managers with limited empirical guidance 

when selecting estimation techniques for actuarial valuation (Pangestu & Mahrani, 2023). 

Accordingly, the objective of this study is to conduct a comparative analysis of Unfunded 

Actuarial Liability using the Frozen Initial Liability (FIL) method under a Hull-White stochastic interest 

rate framework, with parameters estimated using both Ordinary Least Squares and Jackknife methods. 

By integrating robust interest rate estimation techniques into actuarial funding analysis, this study aims 

to evaluate how differences in estimation approaches affect actuarial surplus or deficit outcomes and to 

provide practical insights for more accurate and sustainable pension fund management. 

Despite the extensive use of stochastic interest rate models and actuarial funding methods in 

pension valuation, existing studies tend to address these components separately. Prior research has 

focused either on interest rate modeling and parameter estimation performance, or on actuarial funding 

methods under fixed or simplified interest rate assumptions. However, there is limited empirical 

evidence on how different parameter estimation techniques within a stochastic interest rate framework 

translate into actuarial funding outcomes, particularly Unfunded Actuarial Liability (UAL) under the 

Frozen Initial Liability (FIL) method. Accordingly, this study contributes by integrating the Hull–White 
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stochastic interest rate model with the FIL actuarial funding framework and by comparing OLS and 

Jackknife parameter estimation methods in terms of their implications for actuarial liabilities and 

funding adequacy. Rather than proposing a new estimation method, this study provides empirical insight 

into how estimation choices affect pension funding results in practice. 

 

MATERIALS AND METHODS  

Data 

This study utilizes two primary datasets. The first dataset comprises the Bank Indonesia policy 

interest rate (BI Rate) observed over the period 2000–2023, resulting in a total of 24 annual observations 

that capture long-term interest rate dynamics in Indonesia. The second dataset relates to Civil Servants, 

consisting of a sample of 50 individuals classified under grade 3A. For this group, the variables analyzed 

include entry age into civil service, statutory retirement age, and base salary, which collectively serve 

as key inputs for modeling employment duration and income-related financial outcomes. 

 

Mortality Table and Commutation Symbol 

A mortality table summarizes the pattern of deaths within a population over a specified period 

and provides the probabilities associated with survival and death at different ages. In this table, 𝑙𝑥 

denotes the number of individuals who remain alive at exact age 𝑥, while 𝑑𝑥 represents the number of 

individuals who die at that age (Pangestu & Mahrani, 2023). Mortality tables serve as a fundamental 

tool in actuarial science, forming the basis for the valuation of life-contingent financial products. The 

probability that an individual aged 𝑥 will survive for an additional 𝑡 years, denoted by  𝑡𝑝𝑥, is expressed 

as: 

𝒑𝒙𝒕
 =

𝒍𝒙+𝒕

𝒍𝒙
 

(1) 

This probability reflects the proportion of individuals aged 𝑥who are expected to be alive at age 𝑥 + 𝑡. 

Conversely, the probability that an individual aged 𝑥 will die before reaching age 𝑥 + 𝑡, denoted by 

 𝑡𝑞𝑥, is given by: 

𝒒𝒙𝒕
 =

𝒍𝒙 − 𝒍𝒙+𝒕

𝒍𝒙
 (2) 

This measure represents the complement of the survival probability over the same time interval 

and is essential in modeling mortality risk. 

In actuarial calculations, commutation functions are commonly employed to simplify the 

evaluation of future cash flows associated with insurance benefits and annuity payments. These 

functions introduce specialized notations that facilitate efficient computation, particularly for payments 

made at the beginning of each period, denoted by 𝑎̈ (Andriananda & Maulana, 2023). Among the 

commutation symbols derived from mortality tables is: 

𝑫𝒙 = 𝒗𝒙𝒍𝒙 (3) 

where 𝒗𝒙 represents the discount factor accounting for the time value of money. The symbol 𝑫𝒙 

therefore combines both survival probabilities and interest discounting. Furthermore, the commutation 

symbol 𝑵𝒙 is defined as the cumulative sum of 𝑫𝒙 over future ages and is expressed as 

𝑵𝒙 = ∑𝑫𝒙+𝒕

𝝎

𝒕=𝟎

 (4) 

The parameter 𝜔 denotes the limiting age, which corresponds to the maximum attainable age 

assumed in the construction of the mortality table. These commutation symbols play a critical role in 

actuarial valuation by enabling concise and systematic calculations of life insurance premiums, reserves, 

and pension benefits. 

 

Whole Life Annuity Due 

An annuity is a payment of a predetermined amount made at regular intervals or over a specified 

period. A whole life annuity, which is received by pension program participants from the beginning of 

the period until the participant's death and is paid at the start of the year (Caraka, 2016), can be 

formulated as follows  

𝒂̈𝒙 = ∑ 𝒗𝒕
∞

𝒕=𝟎
𝒑𝒙𝒕
 = 

𝑵𝒙

𝑫𝒙
 

(5) 
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The payment of a whole life annuity is not limited to annual periods but can also be made monthly or 

other periodic. If a payment of 1 is made at the beginning of each period with a frequency of 𝑚 Times 

per year, the equation can be formulated as follows. 

𝒂̈𝒙
(𝒎)

= 𝒂̈𝒙 −
𝒎 − 𝟏

𝟐𝒎
 

(6) 

 

Salary and Benefit Function 

Salary notation is important for estimating future salaries since pension benefits depend on the 

salary growth of participants. The annual salary of a participant aged 𝑥 is denoted as 𝑠𝑥, while 𝑆𝑥 

represents the accumulated salary from the entry age 𝑒 to 𝑥 (Utami, Wilandari, & Wuryandari, 2012) 

which can be formulated as follows  

𝒔𝒙+𝒕 = 𝒔𝒙(𝟏 + 𝒔)𝒕 (7) 

Thus, a participant's total income or salary before retirement is formulated as follows. 

𝑺𝒓−𝟏 = ∑ 𝒔𝒙

𝒓−𝟏

𝒙=𝒆
 

(8) 

The benefit function determines the benefits paid upon retirement, termination of employment, 

disability, and death. The amount of retirement benefits at the age 𝑟 is based on the participant's average 

salary during employment from entry-age 𝑒 to retirement age 𝑟, formulated as follows: 

𝑩𝒓 = 𝒌𝑺𝒓−𝟏 (9) 

 

Brownian Motion and Wiener Process 

A stochastic process {𝑋(𝑡), 𝑡 ∈ 𝑇} is a collection of random variables, meaning that for every 𝑡 ∈
𝑇, 𝑋(𝑡) is a random variable. Since the index 𝑡 is often interpreted as time, 𝑋(𝑡) represents the state of 

the process at time 𝑡. For example, 𝑋(𝑡) may denote the number of customers entering a supermarket at 

time 𝑡or the total sales recorded in a market at time 𝑡. The set 𝑇 is referred to as the index set of the 

process. When 𝑇 is a countable set, the stochastic process is called a discrete-time stochastic process. 

For instance, {𝑋𝑛, 𝑛 = 0,1,… } is a discrete-time stochastic process indexed by non-negative integers, 

such as months. Conversely, when 𝑇 is an interval on the real line, the stochastic process is called a 

continuous-time stochastic process. As an example, {𝑋(𝑡), 𝑡 ≥ 0} represents a continuous-time 

stochastic process indexed by non-negative real numbers (Lestari & Mahrani, 2024).  

Brownian motion refers to the random and continuous movement of particles suspended in a 

fluid (liquid or gas). It was first observed in 1827 by the Scottish botanist Robert Brown, who noted that 

pollen particles suspended in water moved irregularly in random directions, with the intensity of motion 

increasing as temperature rose (Taylor & Karlin, 1998). In the early 1900s, Louis Bachelier extended 

Brown’s observations by providing the first mathematical formulation of random motion and applying 

it to model stock price fluctuations in the Paris Stock Exchange. Subsequently, in the 1920s, Norbert 

Wiener developed a rigorous probabilistic framework for this model, which is now known as Brownian 

motion or the Wiener process (Wiersema, 2008). The Wiener process is a special type of continuous-

time Markov stochastic process with zero mean increments and unit variance per unit time. It is widely 

used in physics to describe particle motion under molecular collisions and has become a fundamental 

building block in stochastic modeling (Hull, 2009). A stochastic process 𝑊(𝑡)is called a Brownian 

motion if it satisfies the following properties: (i) 𝑊(0) = 0; (ii) it has independent increments over non-

overlapping time intervals; and (iii) the increment over any interval of length 𝑢, from time 𝑡to 𝑡 + 𝑢, is 

normally distributed with mean zero and variance equal to 𝑢. 

 

Itô Process  

An Itô process is a generalized Wiener process characterized by two parameters, 𝑎and 𝑏, which 

are functions of the underlying state variable 𝑟(𝑡)and time 𝑡 (Hull, 2009). This process forms the 

foundation of stochastic calculus and is widely applied in financial and actuarial modeling. The 

evolution of an Itô process is defined through the Itô integral, which captures the accumulation of 

stochastic effects over time. For a simple (stepwise constant) adapted process 𝑟(𝑡), the Itô integral over 

the interval [0, 𝑇]is defined as 

∫ 𝑟(𝑡) 𝑑𝑊(𝑡) =
𝑇

0

∑ 𝑟𝑖

𝑛−1

𝑖=0

[𝑊(𝑡𝑖+1) − 𝑊(𝑡𝑖)], 
(10) 

where {𝑡𝑖}𝑖=0
𝑛  is a partition of the interval [0, 𝑇], 𝑟𝑖 denotes the value of 𝑟(𝑡) on the subinterval [𝑡𝑖 , 𝑡𝑖+1), 

and 𝑊(𝑡) represents a standard Wiener process. For more general stochastic processes, the Itô integral 
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is defined as the limit in mean square of such sums. In its simplest form, the Itô integral satisfies several 

important properties. First, linearity holds: if 𝑟(𝑡) and 𝑌(𝑡) are simple stochastic processes and 𝑎 and 

𝑏 are constants, then 

∫ (𝑎 𝑟(𝑡) + 𝑏 𝑌(𝑡)) 𝑑𝑊(𝑡) = 𝑎
𝑇

0

∫ 𝑟(𝑡) 𝑑𝑊(𝑡) + 𝑏
𝑇

0

∫ 𝑌(𝑡) 𝑑𝑊(𝑡).
𝑇

0

 
(11) 

Second, the expectation of the Itô integral is zero, provided that the integrand is square-integrable: 

E [∫ 𝑟
𝑇

0

(𝑡) 𝑑𝑊(𝑡)] = 0. 
(12) 

Third, the Itô integral satisfies the isometry property, which relates its second moment to the integral of  

the squared integrand:  

E [(∫ 𝑟
𝑇

0

(𝑡) 𝑑𝑊(𝑡))

2

] = ∫ E
𝑇

0

[𝑟2(𝑡)]𝑑𝑡. 
(13) 

This property, known as the Itô isometry, is fundamental in the analysis of stochastic differential 

equations and provides a direct link between stochastic integrals and classical Lebesgue integrals. 

 

Euler-Maruyama Method   
The Euler–Maruyama method is a numerical approximation approach designed to solve stochastic 

differential equations (SDEs) when analytical solutions are not readily available. This method extends 

the classical Euler scheme developed by Leonhard Euler, and its core idea is to approximate continuous-

time stochastic processes through discretization of the time domain into sufficiently small intervals 

(Siahaan, Mahrani & Sofia, 2024). Within the framework of SDEs, the Euler–Maruyama method 

estimates the value of a stochastic process 𝑋(𝑡)at discrete time instants 𝑡𝑖, such that the continuous 

process is approximated by 𝑋(𝑡𝑖) ≈ 𝑋𝑖for 𝑖 = 0,1,… ,𝑁 over the interval [0, 𝑇]. The general update rule 

of the Euler–Maruyama scheme can be written as: 

𝑋𝑖+1 = 𝑋𝑖 + 𝑏(𝑡𝑖 , 𝑋𝑖)Δ𝑡 + 𝜎(𝑡𝑖, 𝑋𝑖)√Δ𝑡 𝑍𝑖  (14) 

where Δ𝑡 = 𝑡𝑖+1 − 𝑡𝑖 and 𝑍𝑖 denotes a standard normally distributed random variable, 𝑍𝑖 ∼ 𝒩(0,1). As 

an illustrative example, consider the following stochastic differential equation: 

𝑑𝑋(𝑡) = 𝑑𝑊(𝑡) (15) 

subject to the initial condition 𝑋(0) = 𝑊(0) = 0. The exact solution of this equation is 𝑋(𝑡) = 𝑊(𝑡), 

which corresponds to a Wiener process. Using the Euler–Maruyama scheme, this process is 

approximated in discrete time by 

𝑋𝑖+1 = 𝑋𝑖 + √Δ𝑡 𝑍𝑖 (16) 

Moreover, the Euler–Maruyama method can be employed to discretize Equation (2.20) by replacing the 

continuous-time formulation with a discrete-time representation. This procedure leads to the following 

approximation: 

𝑟(𝑡𝑖+1) = 𝜃(𝑡)Δ𝑡 + (1 − 𝑎Δ𝑡)𝑟(𝑡𝑖) + 𝜎Δ𝑊𝑖  (17) 

where Δ𝑊𝑖 = √Δ𝑡 𝑍𝑖represents the increment of the Wiener process over the 𝑖-th time step. 

 

 

Hull-White Model 

The Hull-White interest rate model is a no-arbitrage interest rate model that accurately reflects 

the current term structure of interest rates. The Hull-White interest rate model is often called the Hull-

White Extended Vasicek model because it extends the Vasicek model, making it known as the Hull-

White model. The Hull-White interest rate model can be formulated as follows (Hull, 2009) : 

𝒅𝒓(𝒕) = (𝜽(𝒕) − 𝒂𝒓(𝒕))𝒅𝒕 + 𝝈𝒅𝑾(𝒕) 

(18) 

The equation above, when integrated, yields: 

𝒓(𝒕) = 𝒓(𝟎)𝒆−𝒂𝒕 +
𝜽(𝒕)

𝒂
(𝟏 − 𝒆−𝒂𝒕) + 𝝈𝒆−𝒂𝒕 ∫ 𝒆𝒂𝒔𝒅𝑾(𝒔)

𝒕

𝟎

 
(19) 

 

By applying the properties of the Itô integral, the expectation and variance can be derived as 

follows.  
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𝐸[𝑟(𝑡)] = 𝑟(0)𝑒−𝑎𝑡 +
𝜃(𝑡)

𝑎
(1 − 𝑒−𝑎𝑡) 

(20) 

And  

𝑣𝑎𝑟[𝑟(𝑡)] =
𝜎2

2𝑎
(1 − 𝑒−𝑎𝑡) 

(21) 

The most important feature of this model is mean reversion, which can be described as the 

tendency of the short-term interest rate 𝒓(𝒕)to fluctuate around a long-term average level, or 

equivalently, the tendency of interest rates to move within a bounded range. Consequently, short-term 

interest rates exhibit a tendency to revert toward their long-run mean. When interest rates approach zero, 

volatility also tends to decline, reducing the impact of random fluctuations and ensuring that interest 

rates remain positive. Conversely, when interest rates are high, volatility tends to increase, which is a 

desirable characteristic of interest rate models (Lestari & Mahrani, 2024).  

Although the Hull–White model is formulated in continuous time as a stochastic differential 

equation, empirical estimation requires discretization because interest rate data are observed at discrete 

time intervals. In this study, the integrated form of the Hull–White model is approximated using a 

discrete-time representation consistent with annual observations. This discretized specification enables 

parameter estimation using Ordinary Least Squares (OLS). The Jackknife method is subsequently 

applied as a resampling-based extension of the same discrete estimation framework, where model 

parameters are repeatedly re-estimated by systematically omitting one observation at a time. Thus, both 

OLS and Jackknife estimations are conducted on the discrete approximation of the continuous-time 

Hull–White process. 

 

Ordinary Least Square Method 

The Ordinary Least Squares (OLS) method is one of the most widely used estimation techniques 

in statistical modeling and econometric analysis. OLS is employed to estimate the parameters of a linear 

regression model by minimizing the sum of squared differences between observed values and their 

corresponding fitted values. Due to its simplicity and strong theoretical properties under classical 

assumptions, OLS remains a fundamental tool in empirical research across economics, finance, and 

actuarial science (Gujarati & Porter, 2009). Consider the following linear regression model: 

𝒚 = 𝑿𝜷 + 𝒆 (22) 

In this formulation, 𝐲denotes an 𝒏 × 𝟏vector of observed values of the dependent variable, 𝐗 

represents an 𝒏 × 𝒌 matrix of explanatory variables including a constant term, 𝜷 is a 𝒌 × 𝟏 vector of 

unknown parameters to be estimated, and 𝜺 is an 𝒏 × 𝟏 vector of random error terms capturing 

unobserved influences. The equation above is minimized by differentiation, as the least squares 

estimator for the parameter estimation. The OLS estimator is obtained by minimizing the objective 

function: 

𝑺(𝜷) = ∑𝜺𝒊
𝟐

𝒏

𝒊=𝟏

= (𝒚 − 𝑿𝜷)′(𝒚 − 𝑿𝜷). 
(23) 

Taking the first-order condition with respect to 𝜷 and solving yields the closed-form OLS estimator: 

𝜷̂𝒐𝒍𝒔 = (𝑿′𝑿)−𝟏𝑿′𝒚 (24) 

Under the Gauss–Markov assumptions—namely linearity, exogeneity, homoscedasticity, and the 

absence of autocorrelation—the OLS estimator is unbiased and efficient, and it possesses the property 

of being the Best Linear Unbiased Estimator (BLUE) (Gujarati & Porter, 2009). When the error terms 

are further assumed to be normally distributed, statistical inference such as hypothesis testing and 

confidence interval estimation can be conducted using the estimated variance–covariance matrix of the 

parameters (Wooldridge, 2016). 

In financial and actuarial applications, the OLS method is frequently used for parameter 

estimation in interest rate models, asset pricing equations, and risk factor analysis. Despite its 

widespread use, OLS estimation may be sensitive to small sample sizes, heteroscedasticity, or serial 

correlation, which are common characteristics of financial time series data. Consequently, robustness-

enhancing techniques or alternative estimators are often employed to complement OLS results 

(Wooldridge, 2016). 
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Jackknife Method 

The Jackknife method is a resampling-based statistical technique used to evaluate the bias, 

variance, and robustness of parameter estimates, particularly when dealing with small sample sizes or 

estimators that are sensitive to individual observations (Siahaan, Mahrani, & Sofia, 2024). The core 

principle of this method is to repeatedly re-estimate the parameter of interest by systematically excluding 

one observation at a time from the original sample. Let 𝜽̂ denote an estimator of the parameter 𝜽 

computed from a sample of size 𝒏. The Jackknife procedure generates a set of leave-one-out estimators, 

each based on a subsample of size 𝒏 − 𝟏, which allows for an assessment of the stability of the original 

estimator. By aggregating these leave-one-out estimates, the Jackknife method provides both a bias-

corrected estimator and an estimate of the sampling variance, thereby improving the reliability of 

inference when classical assumptions may not be fully satisfied. Owing to its conceptual simplicity and 

relatively low computational cost, the Jackknife method has been widely applied in econometric, 

financial, and actuarial studies to enhance estimator robustness and to mitigate the influence of 

individual data points 

The following is the procedure for the Jackknife method used to estimate parameters by removing 

one data point and randomly sampling.  

𝒚𝒊 =

[
 
 
 

𝒚𝟏
𝒊

𝒚𝟐
𝒊

⋮
𝒚𝒏−𝟏

𝒊 ]
 
 
 

, 𝑿𝒊 =

[
 
 
 
 𝟏
𝟏
⋮
𝟏

𝑿𝟏𝟏
𝒊 𝑿𝟏𝟐

𝒊 … 𝑿𝟏𝒋
𝒊

𝑿𝟐𝟏
𝒊 𝑿𝟐𝟐

𝒊 … 𝑿𝟐𝒋
𝒊

⋮
𝑿(𝒏−𝟏)𝟏

𝒊
⋮

𝑿(𝒏−𝟏)𝟐
𝒊

⋱
…

⋮
𝑿(𝒏−𝟏)𝒋

𝒊
]
 
 
 
 

, 𝒆𝒊 =

[
 
 
 

𝒆𝟏
𝒊

𝒆𝟐
𝒊

⋮
𝒆𝒏−𝟏

𝒊 ]
 
 
 

 (25) 

Let 𝑦𝑖denote the vector of the dependent variable after excluding the 𝑖-th observation, 𝑋𝑖represent the 

corresponding matrix of independent variables with the 𝑖-th row removed, and 𝑒𝑖denote the vector of 

residuals obtained from this reduced sample. Using the least squares approach, the parameter estimate 

𝛽̂𝑖for the 𝑖-th Jackknife sample is obtained by minimizing the sum of squared residuals, which yields 

the estimator given :  

𝜷̂𝒊 = (𝑿𝒊′𝑿𝒊)−𝟏𝑿𝒊′𝒚𝒊 (26) 
The symbol 𝒊 represents the row in the matrix, where 𝒊 = 𝟏,… , 𝒏 resulting in the Jackknife parameter 

estimates 𝜷̂𝟏, 𝜷̂𝟐, … , 𝜷̂𝒏 Thus, the Jackknife parameter estimate can be obtained from the average value 

of each parameter. 𝜷̂𝟏, 𝜷̂𝟐, … , 𝜷̂𝒏 As follows [8]: 

𝜷̂ = ∑
𝜷̂𝒊

𝒏

𝒏

𝒊=𝟏

 
(27) 

This averaging process serves to reduce estimation bias and produces a more robust parameter estimate 

compared to that obtained from a single full-sample estimation. 

 

Mean Absolute Percentage Error (MAPE) 

The Mean Absolute Percentage Error (MAPE) is a widely used accuracy measure for evaluating 

the performance of forecasting and predictive models. MAPE quantifies the average magnitude of 

prediction errors in percentage terms, thereby providing an intuitive interpretation of model accuracy 

relative to the actual observed values (Maricar, 2019). Given a set of actual observations 𝒚𝒕and 

corresponding predicted values 𝒚̂𝒕 for 𝒕 = 𝟏, 𝟐,… , 𝒏, the MAPE is defined as: 

𝑴𝑨𝑷𝑬 =
𝟏𝟎𝟎%

𝒏
∑ |

𝒀𝒊 − 𝒀̂𝒊

𝒀𝒊
|

𝒏

𝒊=𝟏
 

(28) 
MAPE measures the average absolute deviation between predicted and actual values as a 

percentage of the actual values. Lower MAPE values indicate better predictive accuracy, with values 

closer to zero implying a higher degree of model fit. 

In empirical applications, MAPE is particularly appealing due to its scale-independent nature, 

allowing for straightforward comparison across different models or datasets. However, it is important 

to note that MAPE may be undefined or unstable when actual values 𝑦𝑡are close to zero, and it may 

disproportionately penalize negative errors. Despite these limitations, MAPE remains a popular metric 

in financial, actuarial, and time-series forecasting studies due to its simplicity and interpretability. 

 

Frozen Initial Liability Method 

The Frozen Initial Liability (FIL) method is a pension funding method commonly used to 

calculate pension funding for a specific group (Alfikri, Satyahadewi, & Perdana, 2020). The Frozen 
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Initial Liability method adapts the Entry Age Normal method, which begins by determining the normal 

contribution amount for all participants. The assumption used in this method is that the normal 

contribution for each participant remains the same for all members within the group. (Pangestu & 

Mahrani, 2023) The normal contribution formula for the FIL method is expressed as follows: 

𝑵𝑪𝒕
𝒋
=

𝟏

𝒏𝒕
∑ 𝑩𝒓

𝒋
𝒂̈𝒓

(𝟏𝟐) 𝑫𝒓

𝑵𝒆 − 𝑵𝒓
𝒋∈𝑨𝒕

 
(29) 

The actuarial liability is the pension funds that should be accumulated for future pension payments. The 

actuarial liability under the Frozen Initial Liability (FIL) method can be formulated as follows (Gajek 

& Ostaszewski, 2004): 

𝑨𝑳𝒕+𝟏 = 𝑨𝑳𝒕(𝟏 + 𝒊) − (∑𝑷𝑽𝑭𝑩̃𝒕+𝟏
𝒋

𝒋∈𝑻

− ∑ 𝒒𝒙𝑷𝑽𝑭𝑩̃𝒕+𝟏
𝒋

𝒋∈𝑨𝒕

) − ∑𝑷𝑽𝑭𝑩̃𝒕+𝟏
𝒋

𝒋∈𝑹

+ ∑ ∆𝑩𝒕
𝒋
𝒂̈𝒚

(𝟏𝟐) 𝑫𝒓

𝑫𝒆+𝟏
𝒋∈𝑨𝒕+𝟏

−
𝟏

𝒏𝒕+𝟏
𝑵𝑪𝒕+𝟏 ∑

𝑵𝒆+𝟏 − 𝑵𝒓

𝑫𝒆+𝟏
𝒋∈𝑨𝒕+𝟏

+ (𝟏

+ 𝒊)
𝟏

𝒏𝒕
𝑵𝑪𝒕 ∑

𝑵𝒆 − 𝑵𝒓

𝑫𝒆
𝒋∈𝑨𝒕

 

(30) 

 

 

 

 

 

Unfunded Actuarial Liability 

Unfunded Actuarial Liability (UAL) refers to the portion of an actuarial liability that is not 

covered by the actuarial value of plan assets. It represents the funding shortfall of a pension or long-

term benefit plan when the present value of promised future benefits exceeds the assets accumulated to 

finance those obligations. UAL is a key indicator of the financial sustainability and solvency of defined 

benefit pension schemes and long-term care programs (Gajek & Ostaszewski, 2004). Thus, UAL is 

formulated as follows: 

𝑼𝑨𝑳𝒕+𝟏 = (𝑼𝑨𝑳𝒕 + 𝑻𝑵𝑪𝒕)(𝟏 + 𝒊) − 𝑪 − 𝑰𝒄 (31) 
where TNC𝑡 denotes the total normal cost at time 𝑡, 𝑖 represents the actuarial interest rate, 𝐶 denotes the 

contribution made during the period, and 𝐼𝑐 represents interest credited on contributions. In this study, 

the contribution term 𝐶 is assumed to be zero, reflecting a scenario in which no additional funding is 

made during the valuation period. This assumption allows the analysis to focus on the intrinsic dynamics 

of the unfunded actuarial liability driven by benefit accruals and interest accumulation, thereby 

highlighting the potential growth of  UAL in the absence of corrective funding measures. 

 

RESULTS AND DISCUSSION 

Hull-White Interest Rate Modelling  

The Hull–White interest rate modeling in this study is initiated by estimating the regression 

parameter 𝜷derived from Equation (19), which results from the discretization of the continuous-time 

Hull–White model. Parameter estimation is conducted using two approaches, namely the Ordinary Least 

Squares (OLS) method and the Jackknife method, in order to assess both estimation efficiency and 

robustness. The estimated values of the regression parameters 𝜷̂𝟎 and 𝜷̂𝟏 obtained from these methods 

are reported in Table 1. The results indicate that the OLS and Jackknife estimates are very close, 

suggesting that the regression relationship underlying the discretized model is stable and not overly 

influenced by individual observations. 

Table 1. Value of Parameter 𝜷  

Parameter OLS Jackknife 

𝛽̂0  0.0224 0.0225 

𝛽̂1 0.6671 0.6664 

The estimated values of 𝜷 are subsequently used to derive the structural parameters of the Hull–

White model, namely the speed of mean reversion 𝒂, the long-term mean level 𝜽, and the volatility 

parameter 𝝈. The resulting parameter estimates obtained from both estimation methods are presented in 

Table 2. The mean reversion parameter 𝒂̂ reflects the rate at which the short-term interest rate adjusts 

toward its long-term equilibrium, while 𝜽̂ represents the long-term mean level to which the interest rate 
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converges over time. Meanwhile, the volatility parameter 𝝈̂ captures the magnitude of random 

fluctuations in the short-term interest rate process. 

Table 2. Parameter Estimation  

Parameter OLS Jackknife 

𝑎̂ 0,3328 0,3335 

𝜃 0,0224 0,0225 

𝜎̂ 0,0731 0,0731 

As shown in Table 2, the parameter estimates produced by the OLS and Jackknife methods are 

largely consistent. In particular, the estimated long-term mean 𝜽̂ and volatility 𝝈̂ are identical under both 

methods, indicating strong robustness with respect to the estimation technique. The Jackknife-based 

estimate of the mean reversion speed 𝒂̂is slightly higher than that obtained from OLS, reflecting a minor 

adjustment after accounting for the influence of individual observations. 

It should be noted that the interest rate dataset employed in this study consists of 24 annual 

observations of the Bank Indonesia policy rate, which represents a relatively small sample size. This 

limitation may affect statistical power and the robustness of parameter estimation. Furthermore, the OLS 

approach relies on classical assumptions such as linearity, independence, and homoscedasticity of error 

terms, which may not fully hold for interest rate data that are often characterized by persistence and 

volatility clustering. For this reason, the Jackknife method is applied not as a substitute for OLS, but as 

a robustness-enhancing technique that mitigates sensitivity to individual observations, particularly in 

small-sample settings. Consequently, the estimated Hull–White parameters should be interpreted as 

empirical results conditional on the available data and the modeling assumptions adopted in this study. 

The error measurement of the Hull–White model is conducted to assess the accuracy of the model 

in replicating observed interest rate movements. Model performance is evaluated using the Mean 

Absolute Percentage Error (MAPE), which measures the average magnitude of deviations between the 

observed Bank Indonesia (BI) Rate and the interest rates generated by the Hull–White model. The 

MAPE is calculated separately for each parameter estimation method, namely Ordinary Least Squares 

(OLS) and Jackknife, using the corresponding simulated interest rate paths.  
 

 
 

Figure 1. Hull-White Interest Rate for Each Parameter Estimation and BI-Rate Interest Rate 

Figure 1 presents a comparison between the observed BI Rate and the interest rate paths generated 

by the Hull–White model under OLS- and Jackknife-based parameter estimation. All three series exhibit 

a clear downward trend over the observation period, indicating that both estimation methods are able to 

capture the mean-reverting behavior of interest rates. This result confirms the suitability of the Hull–

White framework in modeling the long-term dynamics of policy interest rates. 

Relative to the observed BI Rate, the Hull–White estimated interest rates display smoother 

trajectories, which reflect the stochastic structure of the model and the effect of mean reversion. A 

systematic difference is observed between the two estimation approaches, with the Jackknife-based 

estimates consistently lying slightly above those obtained using OLS. This pattern suggests that the 

Jackknife method produces parameter estimates that are less influenced by extreme observations, 

thereby yielding greater robustness to data variability. 

The visual comparison is supported by the MAPE results, which show that the Jackknife method 

achieves a lower prediction error (24.4%) compared to the OLS method (26.1%). This indicates that the 

Jackknife-based Hull–White model provides superior predictive accuracy relative to OLS. Although the 

difference in MAPE values may appear modest, it is actuarially meaningful, as even small differences 

in estimated interest rates can lead to substantial changes in discount factors. Consequently, these 
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differences have direct implications for the valuation of actuarial liabilities and the assessment of 

funding adequacy in pension and long-term benefit schemes. 

 

Interest Rate Estimation of Hull-White Model 

The interest rate estimation is conducted over 111 annual periods using the Hull–White one-factor 

model, with an initial interest rate set at 6%. Parameter estimates obtained from the Ordinary Least 

Squares (OLS) and Jackknife methods are used to generate projected short-rate paths, which are 

presented in Figure 2. This long projection horizon is intended to capture the long-term dynamics of 

interest rates relevant for actuarial valuation and funding analysis. 
 

 
 

Figure 2. Hull-White Model Estimation 
 

Figure 2 illustrates that the projected interest rate paths generated by both estimation methods 

exhibit similar overall trends, indicating consistency in capturing the mean-reverting behavior inherent 

in the Hull–White model. The simulated interest rates fluctuate around a stable long-term level, 

reflecting the balance between the mean reversion mechanism and stochastic volatility. This result 

confirms that both OLS and Jackknife estimators yield coherent representations of interest rate dynamics 

over extended periods. 

Despite the similarity in overall patterns, noticeable differences emerge in the level and variability 

of the projected interest rates. In most periods, the interest rates estimated using the Jackknife method 

tend to lie above those obtained from OLS. This systematic difference is also reflected in the average 

projected interest rates, where the Jackknife-based estimates produce a higher mean value (0.0678) 

compared to the OLS-based estimates (0.0665). The relatively higher interest rate levels generated by 

the Jackknife method suggest that it is less influenced by extreme observations in the original dataset 

and therefore provides greater robustness to data variability.  

From an actuarial perspective, these differences are economically meaningful. Higher projected 

interest rates lead to lower discount factors, which in turn reduce the present value of future benefit 

obligations. Consequently, the use of Jackknife-based parameter estimates may result in lower actuarial 

liabilities and improved funding indicators compared to those derived from OLS estimates. Therefore, 

although the numerical differences between the two estimation methods appear modest, their 

implications for long-term actuarial valuation and funding adequacy can be substantial. 

 

Actuarial Calculation for the Frozen Initial Liability Method 

The Hull–White interest rate model is applied in actuarial valuation using the Frozen Initial 

Liability (FIL) method, which assumes that benefit accruals are fixed at the valuation date and no 

additional service credits are accumulated thereafter. The initial monthly lifetime annuity is first 

calculated using commutation functions that incorporate survival probabilities and discount factors 

derived from the Hull–White estimated interest rate paths. The valuation is conducted for retirement 

ages of 58 and 60 years using parameter estimates obtained from both the Ordinary Least Squares (OLS) 

and Jackknife methods, with the resulting monthly annuity values presented in Table 4 

Table 4. Monthly Annuity 

Age Annuity Using OLS Annuity using Jackknife 

58 19,0010 16,9269 

60 22,6211 18,6175 

The results indicate that the annuity values computed using Jackknife-based interest rate 

estimates are consistently lower than those obtained under OLS for both retirement ages. This outcome 

reflects the relatively higher interest rates generated by the Jackknife method, which produce stronger 
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discounting effects and thus reduce the present value of annuity payments. The pension benefit 

calculation also accounts for the accumulated salary up to retirement, assuming an annual salary growth 

rate of 3%, with cumulative growth naturally slowing as retirement approaches. Overall, these findings 

highlight the sensitivity of actuarial liabilities to interest rate assumptions and demonstrate that the 

choice of estimation method within the Hull–White framework has a material impact on annuity 

valuation under the Frozen Initial Liability approac 

 

a. Normal Contribution and Actuarial Liability 

The calculation of normal contributions under the Frozen Initial Liability (FIL) method is 

influenced by both the contribution amount per participant and the number of active participants in 

each period. Under the FIL framework, the normal contribution per active participant remains 

constant from the time an individual joins the pension scheme until retirement, reflecting the 

assumption that benefit accruals are fixed at the valuation date. Consequently, changes in total normal 

contributions over time are primarily driven by demographic factors, particularly participant entry 

and exit from the program, rather than by adjustments in contribution rates. In this study, normal 

contributions are calculated based on interest rates generated by the Hull–White model using both 

Ordinary Least Squares (OLS) and Jackknife parameter estimation methods. 

    

  
Figure 3a. Normal Contribution using OLS 

Method 

Figure 3b. Normal Contribution using 

Jackknife Method 

 

Figures 3a and 3b illustrate the evolution of normal contributions derived from Hull–White 

interest rates estimated using OLS and Jackknife methods, respectively. In both figures, normal 

contributions remain stable over an extended initial period, consistent with the core assumption of 

the FIL method for active participants. A sharp decline is observed in later periods as participants 

approach retirement age, which leads to a reduction in the number of active contributors rather than 

a change in the contribution structure itself. While the overall patterns produced by both estimation 

methods are similar, the Jackknife-based normal contributions are consistently slightly lower than 

those obtained using OLS. This difference reflects the higher interest rates estimated under the 

Jackknife method, which result in stronger discounting effects and thus lower required normal 

contributions. These findings highlight the sensitivity of contribution requirements to interest rate 

assumptions and underscore the importance of robust interest rate estimation in actuarial funding 

analysis. 

The normal contribution amounts estimated in the previous section serve as the basis for 

determining the actuarial liabilities that must be reserved by the pension fund. Using these 

contributions, actuarial liabilities are calculated over a projection horizon of 37 periods under the 

Frozen Initial Liability (FIL) method, with discount rates generated from the Hull–White interest rate 

model. Figures 4a and 4b present the projected actuarial liabilities based on interest rate estimates 

obtained using the Ordinary Least Squares (OLS) and Jackknife methods, respectively. 
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Figure 4a. Actuarial Liability Using OLS 

Method 

Figure 4b. Actuarial Liability Using Jackknife 

Method 

Both figures display a clear exponential growth pattern in actuarial liabilities over time. In the 

early periods, liabilities remain relatively low, reflecting the long remaining time to retirement and 

the stronger impact of discounting. As participants approach retirement age, actuarial liabilities 

increase substantially due to the accumulation of pension benefits and the diminishing effect of 

discounting over shorter time horizons. Although the overall trajectories of actuarial liabilities under 

the OLS and Jackknife methods are similar, the liabilities estimated using the Jackknife method are 

consistently lower than those obtained using OLS. This outcome is consistent with the higher interest 

rate levels generated by the Jackknife-based Hull–White model, which lead to lower present values 

of future pension obligations. These findings underscore the high sensitivity of actuarial liabilities to 

interest rate assumptions and highlight the importance of robust interest rate estimation in pension 

funding and reserving analysis. 

 

b. Unfunded Actuarial Liability 

The computation of Unfunded Actuarial Liability (UAL) is essential for evaluating whether a 

pension fund possesses sufficient resources to fulfill its long-term actuarial commitments. UAL 

captures the funding position of a pension scheme by comparing actuarial liabilities with the 

accumulation of contributions and investment returns, thereby identifying potential funding gaps or 

surpluses. In this study, UAL outcomes are illustrated graphically to facilitate a clearer comparison 

between estimation approaches. 

 

 
Figure 5. UAL Amount Using OLS Method and Jackknife 

 

Figure 5 depicts the evolution of UAL over a 37-period projection horizon calculated under 

the Frozen Initial Liability (FIL) method, using interest rates generated by the Hull–White model 

with parameters estimated via Ordinary Least Squares (OLS) and Jackknife methods. Both curves 

exhibit a clear and persistent downward trajectory, with UAL values becoming progressively more 

negative as time advances. This pattern indicates that actuarial liabilities remain fully funded 

throughout the projection period, and that the pension scheme consistently operates in a surplus 

position rather than experiencing funding deficits.  

A closer examination of the figure reveals systematic differences between the two estimation 

methods. The UAL series derived from the OLS-based Hull–White model lies below that obtained 

using the Jackknife method across most periods, implying that the OLS approach produces more 

negative UAL values and therefore a larger funding surplus. The divergence between the two curves 

gradually widens over time, reflecting the cumulative effect of differences in interest rate estimates 

on discounting future pension obligations. These differences arise primarily from variations in the 

estimated interest rate paths. The Jackknife method yields relatively higher interest rates compared 
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to OLS, which results in stronger discounting of future liabilities and consequently lower present 

values of actuarial obligations. As a result, although both methods indicate a surplus position, the 

magnitude of the surplus is smaller under the Jackknife approach. Overall, Figure 5 highlights the 

sensitivity of pension funding outcomes to interest rate estimation methods and underscores the 

importance of robust interest rate modeling in assessing actuarial funding adequacy and long-term 

pension sustainability. 

 

 

CONCLUSION 

This study provides empirical evidence on the implications of interest rate estimation methods 

within the Hull–White framework for actuarial valuation. The results demonstrate that the Jackknife-

based parameter estimation produces a slightly higher average interest rate of 0.0678 compared to 

0.0665 obtained using the Ordinary Least Squares (OLS) method. More importantly, the Jackknife 

approach yields a lower prediction error, as reflected by a Mean Absolute Percentage Error (MAPE) of 

24.4%, compared to 26.1% under OLS. These findings indicate that the Jackknife method enhances 

estimation robustness by reducing sensitivity to individual observations, which is particularly relevant 

given the relatively small sample size of the interest rate data used in this study. 

When the estimated interest rates are applied to actuarial calculations under the Frozen Initial 

Liability (FIL) method, both estimation approaches result in negative Unfunded Actuarial Liability 

(UAL) values over the projection horizon, indicating that actuarial liabilities are fully funded and that 

the pension scheme operates in a surplus position. However, the magnitude of the surplus differs across 

methods. Specifically, the UAL values derived from the Jackknife-based Hull–White model are 

consistently less negative than those obtained using OLS, implying a smaller surplus despite the higher 

estimated interest rates. This outcome confirms the inverse relationship between discount rates and 

actuarial surplus, whereby higher interest rates reduce the present value of future pension obligations 

and consequently lower the measured surplus. 

The novelty of this study lies in the integration of a robustness-oriented resampling technique, 

namely the Jackknife method, into the parameter estimation of the Hull–White interest rate model and 

its direct application to actuarial valuation using the Frozen Initial Liability approach. Unlike prior 

studies that rely predominantly on conventional OLS estimation, this research demonstrates that even 

modest improvements in interest rate estimation accuracy can lead to materially different actuarial 

outcomes, particularly in terms of annuity values, normal contributions, and funding surpluses. By 

explicitly linking interest rate estimation robustness to actuarial funding indicators, this study 

contributes new insights to the actuarial literature and underscores the importance of methodological 

choices in interest rate modeling for pension funding adequacy and actuarial decision-making. 
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