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ABSTRACT

Pension programs are designed to provide financial security after retirement, requiring accurate
actuarial valuation to ensure funding adequacy. A key determinant of actuarial liabilities is the interest
rate assumption, which directly affects the present value of future pension obligations and the level of
unfunded actuarial liability (UAL). Despite its importance, most pension valuation studies rely on
deterministic interest rates, while empirical evidence on the use of stochastic interest rate models
combined with robust parameter estimation techniques remains limited. This study addresses this gap
by evaluating actuarial liability adequacy using the Frozen Initial Liability (FIL) method under a
stochastic interest rate framework. The Hull-White one-factor model is employed to capture the
dynamic behavior of interest rates, with parameters estimated using Ordinary Least Squares (OLS) and
the Jackknife method. The Jackknife approach is introduced to improve estimation robustness,
particularly in the presence of small samples and influential observations. Empirical results show that
the Jackknife method produces an average interest rate of 0.0678 with a Mean Absolute Percentage
Error (MAPE) of 24.4%, while OLS yields an average rate of 0.0665 with a MAPE of 26.1%. Both
approaches result in negative UAL values, indicating a fully funded pension scheme with a surplus
position. However, the surplus obtained under the Jackknife estimation is lower despite the higher
interest rate estimate, suggesting an inverse relationship between interest rates and surplus levels within
the FIL framework.
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INTRODUCTION

Retirement is a phase in which individuals cease working upon reaching the statutory retirement
age or by personal decision. At this stage, individuals are entitled to pension benefits or severance
payments to ensure financial security in old age (Lesmana, 2015). Pension fund programs represent
long-term financial commitments by employers in recognizing employees’ contributions throughout
their working lives. In Indonesia, pension fund management is conducted by both public and private
institutions, including PT Jamsostek, PT Asabri, and PT TASPEN, under the supervision of BPJS
Ketenagakerjaan (Ahmad, Alhusain, & Silalahi, 2015). As the number of retirees continues to increase,
pension fund managers face growing challenges in ensuring that sufficient funds are available to meet
long-term benefit obligations.

A pension fund functions as a long-term savings mechanism that provides income security after
retirement. Pension benefits are accumulated during the employment period and remain payable even in
cases of disability or death prior to retirement. While pension schemes enhance job security and
employee motivation, inadequate funding may lead to deficits that threaten the sustainability of benefit
payments (Marwa, 2020). Consequently, pension obligations must be recognized as actuarial liabilities
that should be fully funded at retirement. Any shortfall between available assets and actuarial liabilities,
referred to as Unfunded Actuarial Liability (UAL), poses a significant financial risk and highlights the
importance of accurate actuarial valuation and funding strategies. This study focuses on the problem of
measuring and managing UAL within defined-benefit pension schemes under uncertain interest rate
conditions.

Various actuarial funding methods have been developed to address pension valuation,
particularly for group-based pension programs. One widely used approach is the Frozen Initial Liability
(FIL) method, which is derived from the Entry Age Normal (EAN) method and assumes constant normal
contributions for all participants regardless of retirement age. Previous studies have applied the FIL
method primarily under deterministic interest rate assumptions, which may fail to capture the inherent
volatility of financial markets. To address this limitation, stochastic interest rate models have been
introduced, among which the Hull-White model has gained prominence due to its ability to reflect mean
reversion and align with the observed term structure of interest rates (Alfikri, Satyahadewi, & Perdana,
2020).

In terms of the state of the art, existing research on stochastic interest rate modeling has largely
concentrated on parameter estimation and model behavior, often employing Ordinary Least Squares
(OLYS) as the primary estimation technique. Some studies have introduced resampling-based methods
such as the Jackknife to improve robustness and reduce sensitivity to outliers (Ariani, Nasution, &
Yuniarti, 2017). Empirical evidence suggests that the Jackknife method can produce lower volatility
estimates in the Cox-Ingersoll-Ross (CIR) model (Yunizar, 2019), while comparable parameter
behavior has been observed for the Hull-White model (Choliga, 2022). However, these studies
predominantly evaluate estimation performance in isolation and do not extend the analysis to actuarial
funding outcomes.

What remains insufficiently explored is how different parameter estimation methods within
stochastic interest rate models influence actuarial liability calculations and, in particular, the magnitude
and dynamics of Unfunded Actuarial Liability under specific pension funding methods such as FIL. The
direct linkage between interest rate estimation accuracy and pension funding adequacy has not been
explicitly addressed in prior studies, leaving pension fund managers with limited empirical guidance
when selecting estimation techniques for actuarial valuation (Pangestu & Mahrani, 2023).

Accordingly, the objective of this study is to conduct a comparative analysis of Unfunded
Actuarial Liability using the Frozen Initial Liability (FIL) method under a Hull-White stochastic interest
rate framework, with parameters estimated using both Ordinary Least Squares and Jackknife methods.
By integrating robust interest rate estimation techniques into actuarial funding analysis, this study aims
to evaluate how differences in estimation approaches affect actuarial surplus or deficit outcomes and to
provide practical insights for more accurate and sustainable pension fund management.

Despite the extensive use of stochastic interest rate models and actuarial funding methods in
pension valuation, existing studies tend to address these components separately. Prior research has
focused either on interest rate modeling and parameter estimation performance, or on actuarial funding
methods under fixed or simplified interest rate assumptions. However, there is limited empirical
evidence on how different parameter estimation techniques within a stochastic interest rate framework
translate into actuarial funding outcomes, particularly Unfunded Actuarial Liability (UAL) under the
Frozen Initial Liability (FIL) method. Accordingly, this study contributes by integrating the Hull-White
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stochastic interest rate model with the FIL actuarial funding framework and by comparing OLS and
Jackknife parameter estimation methods in terms of their implications for actuarial liabilities and
funding adequacy. Rather than proposing a new estimation method, this study provides empirical insight
into how estimation choices affect pension funding results in practice.

MATERIALS AND METHODS
Data

This study utilizes two primary datasets. The first dataset comprises the Bank Indonesia policy
interest rate (Bl Rate) observed over the period 2000-2023, resulting in a total of 24 annual observations
that capture long-term interest rate dynamics in Indonesia. The second dataset relates to Civil Servants,
consisting of a sample of 50 individuals classified under grade 3A. For this group, the variables analyzed
include entry age into civil service, statutory retirement age, and base salary, which collectively serve
as key inputs for modeling employment duration and income-related financial outcomes.

Mortality Table and Commutation Symbol

A mortality table summarizes the pattern of deaths within a population over a specified period
and provides the probabilities associated with survival and death at different ages. In this table, 1,
denotes the number of individuals who remain alive at exact age x, while d,. represents the number of
individuals who die at that age (Pangestu & Mahrani, 2023). Mortality tables serve as a fundamental
tool in actuarial science, forming the basis for the valuation of life-contingent financial products. The
probability that an individual aged x will survive for an additional t years, denoted by ;p,., is expressed
as:

Lyte
tDx L )

This probability reflects the proportion of individuals aged xwho are expected to be alive at age x + t.
Conversely, the probability that an individual aged x will die before reaching age x + t, denoted by
tqx, 1S given by:

lL,—1
e == @)

This measure represents the complement of the survival probability over the same time interval
and is essential in modeling mortality risk.

In actuarial calculations, commutation functions are commonly employed to simplify the
evaluation of future cash flows associated with insurance benefits and annuity payments. These
functions introduce specialized notations that facilitate efficient computation, particularly for payments
made at the beginning of each period, denoted by d (Andriananda & Maulana, 2023). Among the
commutation symbols derived from mortality tables is:

D, = v*l, (3)
where v* represents the discount factor accounting for the time value of money. The symbol D,
therefore combines both survival probabilities and interest discounting. Furthermore, the commutation
symbol N, is defined as the cumulative sum of D, over future ages and is expressed as

)
Ny = Z Dy (4)
t=0

The parameter w denotes the limiting age, which corresponds to the maximum attainable age
assumed in the construction of the mortality table. These commutation symbols play a critical role in
actuarial valuation by enabling concise and systematic calculations of life insurance premiums, reserves,
and pension benefits.

Whole Life Annuity Due

An annuity is a payment of a predetermined amount made at regular intervals or over a specified
period. A whole life annuity, which is received by pension program participants from the beginning of
the period until the participant's death and is paid at the start of the year (Caraka, 2016), can be
formulated as follows

a =zm vtp, = Ny
* t=0 e Dx (5)
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The payment of a whole life annuity is not limited to annual periods but can also be made monthly or
other periodic. If a payment of 1 is made at the beginning of each period with a frequency of m Times

per year, the equation can be formulated as follows.
m-—1

a™ =g
x *  2m (6)
Salary and Benefit Function
Salary notation is important for estimating future salaries since pension benefits depend on the
salary growth of participants. The annual salary of a participant aged x is denoted as s,, while S,
represents the accumulated salary from the entry age e to x (Utami, Wilandari, & Wuryandari, 2012)
which can be formulated as follows
o ] Syrt = Sx(1+ S)t_ ] (7)
Thus, a participant's total income or salary before retirement is formulated as follows.

r-1
S._1= Z s
1 x=e (8)

The benefit function determines the benefits paid upon retirement, termination of employment,
disability, and death. The amount of retirement benefits at the age r is based on the participant's average
salary during employment from entry-age e to retirement age r, formulated as follows:

B, = kS, C)]

Brownian Motion and Wiener Process

A stochastic process {X(t),t € T} is a collection of random variables, meaning that for every t €
T, X(t) is a random variable. Since the index t is often interpreted as time, X(t) represents the state of
the process at time t. For example, X (t) may denote the number of customers entering a supermarket at
time tor the total sales recorded in a market at time t. The set T is referred to as the index set of the
process. When T is a countable set, the stochastic process is called a discrete-time stochastic process.
For instance, {X,,,n = 0,1, ... } is a discrete-time stochastic process indexed by non-negative integers,
such as months. Conversely, when T is an interval on the real line, the stochastic process is called a
continuous-time stochastic process. As an example, {X(t),t = 0} represents a continuous-time
stochastic process indexed by non-negative real numbers (Lestari & Mahrani, 2024).

Brownian motion refers to the random and continuous movement of particles suspended in a
fluid (liquid or gas). It was first observed in 1827 by the Scottish botanist Robert Brown, who noted that
pollen particles suspended in water moved irregularly in random directions, with the intensity of motion
increasing as temperature rose (Taylor & Karlin, 1998). In the early 1900s, Louis Bachelier extended
Brown’s observations by providing the first mathematical formulation of random motion and applying
it to model stock price fluctuations in the Paris Stock Exchange. Subsequently, in the 1920s, Norbert
Wiener developed a rigorous probabilistic framework for this model, which is now known as Brownian
motion or the Wiener process (Wiersema, 2008). The Wiener process is a special type of continuous-
time Markov stochastic process with zero mean increments and unit variance per unit time. It is widely
used in physics to describe particle motion under molecular collisions and has become a fundamental
building block in stochastic modeling (Hull, 2009). A stochastic process W (t)is called a Brownian
motion if it satisfies the following properties: (i) W (0) = 0; (ii) it has independent increments over non-
overlapping time intervals; and (iii) the increment over any interval of length u, from time tto t + w, is
normally distributed with mean zero and variance equal to u.

It6 Process

An 1t6 process is a generalized Wiener process characterized by two parameters, aand b, which
are functions of the underlying state variable r(t)and time ¢ (Hull, 2009). This process forms the
foundation of stochastic calculus and is widely applied in financial and actuarial modeling. The
evolution of an It6 process is defined through the It integral, which captures the accumulation of
stochastic effects over time. For a simple (stepwise constant) adapted process r(t), the It6 integral over
the interval [0’ T1is defined as

T n-l (10)
[ T dw e =Y n W ) - W),
i=0

where {t;}[-, is a partition of the interval [0’ T], r; denotes the value of r(t) on the subinterval [¢;, t; 1),
and W (t) represents a standard Wiener process. For more general stochastic processes, the 1t6 integral

117



Mahrani et al Vol. 5 No. 2 2025

is defined as the limit in mean square of such sums. In its simplest form, the 1td integral satisfies several
important properties. First, linearity holds: if r(t) and Y(t) are simple stochastic processes and a and
b are constants, then

T
f (ar(t)+bY()dW(t) = aj
0 0
Second, the expectation of the It6 integral is zero, provided that the integrand is square-integrable:
T 12
EU r(t) dW(t)| = 0. (12)
0

Third, the 1t6 integral satisfies the isometry property, which relates its second moment to the integral of
the squared integrand:

T 2 T (13)
E (f r (t) dW(t)) =f E[r?(t)]dt.
[ 0 0

This property, known as the It6 isometry, is fundamental in the analysis of stochastic differential
equations and provides a direct link between stochastic integrals and classical Lebesgue integrals.

T T (11)
r(t) dW(t) + bf Y(t) dW ().
0

Euler-Maruyama Method

The Euler—Maruyama method is a numerical approximation approach designed to solve stochastic
differential equations (SDEs) when analytical solutions are not readily available. This method extends
the classical Euler scheme developed by Leonhard Euler, and its core idea is to approximate continuous-
time stochastic processes through discretization of the time domain into sufficiently small intervals
(Siahaan, Mahrani & Sofia, 2024). Within the framework of SDEs, the Euler—Maruyama method
estimates the value of a stochastic process X (t)at discrete time instants t;, such that the continuous
process is approximated by X (t;) = X;fori = 0,1, ..., N over the interval [0’ T]. The general update rule
of the Euler—Maruyama scheme can be written as:

Xiv1 = X; +b(ti,Xi)At+O'(ti,Xi)\/EZi (14)
where At = t;,; — t; and Z; denotes a standard normally distributed random variable, Z; ~ N (0,1). As
an illustrative example, consider the following stochastic differential equation:

dX(t) = dW(t) (15)
subject to the initial condition X(0) = W (0) = 0. The exact solution of this equation is X(t) = W (t),
which corresponds to a Wiener process. Using the Euler—Maruyama scheme, this process is
approximated in discrete time by
Xi+1 =Xi+\/A_tZi (16)
Moreover, the Euler—-Maruyama method can be employed to discretize Equation (2.20) by replacing the
continuous-time formulation with a discrete-time representation. This procedure leads to the following
approximation:
r(tiy1) = (DAt + (1 — aAt)r(t;) + cAW; a7
where AW; = /At Z;represents the increment of the Wiener process over the i-th time step.

Hull-White Model
The Hull-White interest rate model is a no-arbitrage interest rate model that accurately reflects
the current term structure of interest rates. The Hull-White interest rate model is often called the Hull-
White Extended Vasicek model because it extends the Vasicek model, making it known as the Hull-
White model. The Hull-White interest rate model can be formulated as follows (Hull, 2009) :
dr(t) = (6(t) — ar(t))dt + odW (t)

(18)
The equation above, when integrated, yields:
o(t t
r(t) =1r(0)e * + %(1 —e %) + ae‘atj; eSdW(s) (19)

By applying the properties of the It6 integral, the expectation and variance can be derived as
follows.
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0(t)

a

E[r(t)] = r(0)e % + (1-e) (20)

And
2

var[r(t)] = Z—a (1—e™%) 21)

The most important feature of this model is mean reversion, which can be described as the
tendency of the short-term interest rate r(t)to fluctuate around a long-term average level, or
equivalently, the tendency of interest rates to move within a bounded range. Consequently, short-term
interest rates exhibit a tendency to revert toward their long-run mean. When interest rates approach zero,
volatility also tends to decline, reducing the impact of random fluctuations and ensuring that interest
rates remain positive. Conversely, when interest rates are high, volatility tends to increase, which is a
desirable characteristic of interest rate models (Lestari & Mahrani, 2024).

Although the Hull-White model is formulated in continuous time as a stochastic differential
equation, empirical estimation requires discretization because interest rate data are observed at discrete
time intervals. In this study, the integrated form of the Hull-White model is approximated using a
discrete-time representation consistent with annual observations. This discretized specification enables
parameter estimation using Ordinary Least Squares (OLS). The Jackknife method is subsequently
applied as a resampling-based extension of the same discrete estimation framework, where model
parameters are repeatedly re-estimated by systematically omitting one observation at a time. Thus, both
OLS and Jackknife estimations are conducted on the discrete approximation of the continuous-time
Hull-White process.

Ordinary Least Square Method

The Ordinary Least Squares (OLS) method is one of the most widely used estimation techniques
in statistical modeling and econometric analysis. OLS is employed to estimate the parameters of a linear
regression model by minimizing the sum of squared differences between observed values and their
corresponding fitted values. Due to its simplicity and strong theoretical properties under classical
assumptions, OLS remains a fundamental tool in empirical research across economics, finance, and
actuarial science (Gujarati & Porter, 2009). Consider the following linear regression model:

y=Xf+e (22)

In this formulation, ydenotes an n x 1vector of observed values of the dependent variable, X
represents an n X k matrix of explanatory variables including a constant term, B is a k x 1 vector of
unknown parameters to be estimated, and £ is an n X 1 vector of random error terms capturing
unobserved influences. The equation above is minimized by differentiation, as the least squares
estimator for the parameter estimation. The OLS estimator is obtained by minimizing the objective
function:

n

S(B) =) & = (v~ XB)'(y — XB).

i=1 (23)
Taking the first-order condition with respect to g and solving yields the closed-form OLS estimator:
Bois = (X,X)_IX,y (24)

Under the Gauss—Markov assumptions—namely linearity, exogeneity, homoscedasticity, and the
absence of autocorrelation—the OLS estimator is unbiased and efficient, and it possesses the property
of being the Best Linear Unbiased Estimator (BLUE) (Gujarati & Porter, 2009). When the error terms
are further assumed to be normally distributed, statistical inference such as hypothesis testing and
confidence interval estimation can be conducted using the estimated variance—covariance matrix of the
parameters (Wooldridge, 2016).

In financial and actuarial applications, the OLS method is frequently used for parameter
estimation in interest rate models, asset pricing equations, and risk factor analysis. Despite its
widespread use, OLS estimation may be sensitive to small sample sizes, heteroscedasticity, or serial
correlation, which are common characteristics of financial time series data. Consequently, robustness-
enhancing techniques or alternative estimators are often employed to complement OLS results
(Wooldridge, 2016).
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Jackknife Method

The Jackknife method is a resampling-based statistical technique used to evaluate the bias,
variance, and robustness of parameter estimates, particularly when dealing with small sample sizes or
estimators that are sensitive to individual observations (Siahaan, Mahrani, & Sofia, 2024). The core
principle of this method is to repeatedly re-estimate the parameter of interest by systematically excluding
one observation at a time from the original sample. Let 8 denote an estimator of the parameter
computed from a sample of size n. The Jackknife procedure generates a set of leave-one-out estimators,
each based on a subsample of size n — 1, which allows for an assessment of the stability of the original
estimator. By aggregating these leave-one-out estimates, the Jackknife method provides both a bias-
corrected estimator and an estimate of the sampling variance, thereby improving the reliability of
inference when classical assumptions may not be fully satisfied. Owing to its conceptual simplicity and
relatively low computational cost, the Jackknife method has been widely applied in econometric,
financial, and actuarial studies to enhance estimator robustness and to mitigate the influence of
individual data points

The following is the procedure for the Jackknife method used to estimate parameters by removing
one data point and randomly sampling.

yi 1 X‘.n xgz Xflj el
yo=| %2 x|l Xm X e Xy e (25)
Yn-1 1 an-1)1 an—nz X%n—l)j €n-1

Let y'‘denote the vector of the dependent variable after excluding the i-th observation, X‘represent the
corresponding matrix of independent variables with the i-th row removed, and e’denote the vector of
residuals obtained from this reduced sample. Using the least squares approach, the parameter estimate
Bifor the i-th Jackknife sample is obtained by minimizing the sum of squared residuals, which yields
the estimator given :
Bl = (x"xH)71xly! (26)

The symbol i represents the row in the matrix, where i = 1, ..., n resulting in the Jackknife parameter
estimates B1, B2, ..., B™ Thus, the Jackknife parameter estimate can be obtained from the average value
of each parameter. B1, B2, ..., B™ As follows [8]:

L\
B_;" (27)

This averaging process serves to reduce estimation bias and produces a more robust parameter estimate
compared to that obtained from a single full-sample estimation.

Mean Absolute Percentage Error (MAPE)

The Mean Absolute Percentage Error (MAPE) is a widely used accuracy measure for evaluating
the performance of forecasting and predictive models. MAPE quantifies the average magnitude of
prediction errors in percentage terms, thereby providing an intuitive interpretation of model accuracy
relative to the actual observed values (Maricar, 2019). Given a set of actual observations y;and
corresponding predicted values y, for t = 1,2, ..., n, the MAPE is defined as:

100% ™ Y
MAPE = z
n i=1 (28)

Y;—-Y;
Y;

MAPE measures the average absolute deviation between predicted and actual values as a
percentage of the actual values. Lower MAPE values indicate better predictive accuracy, with values
closer to zero implying a higher degree of model fit.

In empirical applications, MAPE is particularly appealing due to its scale-independent nature,
allowing for straightforward comparison across different models or datasets. However, it is important
to note that MAPE may be undefined or unstable when actual values y.are close to zero, and it may
disproportionately penalize negative errors. Despite these limitations, MAPE remains a popular metric
in financial, actuarial, and time-series forecasting studies due to its simplicity and interpretability.

Frozen Initial Liability Method
The Frozen Initial Liability (FIL) method is a pension funding method commonly used to
calculate pension funding for a specific group (Alfikri, Satyahadewi, & Perdana, 2020). The Frozen
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Initial Liability method adapts the Entry Age Normal method, which begins by determining the normal
contribution amount for all participants. The assumption used in this method is that the normal
contribution for each participant remains the same for all members within the group. (Pangestu &
Mahrani, 2023) The normal contribution formula for the FIL method is expressed as follows:
NC = 1 ) D,
= B
JEA: (29)

The actuarial liability is the pension funds that should be accumulated for future pension payments. The
actuarial liability under the Frozen Initial Liability (FIL) method can be formulated as follows (Gajek
& Ostaszewski, 2004):

. SR/ SR/ SR/ (30)
AL; .1 = AL, (1 +10) — Z PVFB, , — Z qxPVFB, , | — Z PVFB, ,
Jjer JEA; JER

: D 1 Net1 —N
+ 2 ABLGSMY =T — —NCyyy Z =T

Derq Mgy
JEA+1 JEAL+1

1 N.,—N,
+i)—NC; _—
n; 4 D,

JEA:

Unfunded Actuarial Liability

Unfunded Actuarial Liability (UAL) refers to the portion of an actuarial liability that is not
covered by the actuarial value of plan assets. It represents the funding shortfall of a pension or long-
term benefit plan when the present value of promised future benefits exceeds the assets accumulated to
finance those obligations. UAL is a key indicator of the financial sustainability and solvency of defined
benefit pension schemes and long-term care programs (Gajek & Ostaszewski, 2004). Thus, UAL is
formulated as follows:

UAL; 1 = (UAL,+ TNC)(1 +i)—C—1, (31)
where TNC, denotes the total normal cost at time ¢, i represents the actuarial interest rate, C denotes the
contribution made during the period, and I, represents interest credited on contributions. In this study,
the contribution term C is assumed to be zero, reflecting a scenario in which no additional funding is
made during the valuation period. This assumption allows the analysis to focus on the intrinsic dynamics
of the unfunded actuarial liability driven by benefit accruals and interest accumulation, thereby
highlighting the potential growth of UAL in the absence of corrective funding measures.

RESULTS AND DISCUSSION
Hull-White Interest Rate Modelling

The Hull-White interest rate modeling in this study is initiated by estimating the regression
parameter fBderived from Equation (19), which results from the discretization of the continuous-time
Hull-White model. Parameter estimation is conducted using two approaches, namely the Ordinary Least
Squares (OLS) method and the Jackknife method, in order to assess both estimation efficiency and
robustness. The estimated values of the regression parameters B, and 8, obtained from these methods
are reported in Table 1. The results indicate that the OLS and Jackknife estimates are very close,
suggesting that the regression relationship underlying the discretized model is stable and not overly
influenced by individual observations.

Table 1. Value of Parameter 8

Parameter OLS Jackknife
/?0 0.0224 0.0225
Bl 0.6671 0.6664

The estimated values of B are subsequently used to derive the structural parameters of the Hull-
White model, namely the speed of mean reversion a, the long-term mean level 8, and the volatility
parameter a. The resulting parameter estimates obtained from both estimation methods are presented in
Table 2. The mean reversion parameter @ reflects the rate at which the short-term interest rate adjusts
toward its long-term equilibrium, while 8 represents the long-term mean level to which the interest rate
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~

converges over time. Meanwhile, the volatility parameter @ captures the magnitude of random
fluctuations in the short-term interest rate process.

Table 2. Parameter Estimation

Parameter OLS Jackknife
a 0,3328 0,3335
] 0,0224 0,0225
6 0,0731 0,0731

As shown in Table 2, the parameter estimates produced by the OLS and Jackknife methods are
largely consistent. In particular, the estimated long-term mean 8 and volatility & are identical under both
methods, indicating strong robustness with respect to the estimation technique. The Jackknife-based
estimate of the mean reversion speed dis slightly higher than that obtained from OLS, reflecting a minor
adjustment after accounting for the influence of individual observations.

It should be noted that the interest rate dataset employed in this study consists of 24 annual
observations of the Bank Indonesia policy rate, which represents a relatively small sample size. This
limitation may affect statistical power and the robustness of parameter estimation. Furthermore, the OLS
approach relies on classical assumptions such as linearity, independence, and homoscedasticity of error
terms, which may not fully hold for interest rate data that are often characterized by persistence and
volatility clustering. For this reason, the Jackknife method is applied not as a substitute for OLS, but as
a robustness-enhancing technique that mitigates sensitivity to individual observations, particularly in
small-sample settings. Consequently, the estimated Hull-White parameters should be interpreted as
empirical results conditional on the available data and the modeling assumptions adopted in this study.

The error measurement of the Hull-White model is conducted to assess the accuracy of the model
in replicating observed interest rate movements. Model performance is evaluated using the Mean
Absolute Percentage Error (MAPE), which measures the average magnitude of deviations between the
observed Bank Indonesia (Bl) Rate and the interest rates generated by the Hull-White model. The
MAPE is calculated separately for each parameter estimation method, namely Ordinary Least Squares
(OLS) and Jackknife, using the corresponding simulated interest rate paths.
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Figure 1. Hull-White Interest Rate for Each Parameter Estimation and Bl-Rate Interest Rate

Figure 1 presents a comparison between the observed Bl Rate and the interest rate paths generated
by the Hull-White model under OLS- and Jackknife-based parameter estimation. All three series exhibit
a clear downward trend over the observation period, indicating that both estimation methods are able to
capture the mean-reverting behavior of interest rates. This result confirms the suitability of the Hull-
White framework in modeling the long-term dynamics of policy interest rates.

Relative to the observed Bl Rate, the Hull-White estimated interest rates display smoother
trajectories, which reflect the stochastic structure of the model and the effect of mean reversion. A
systematic difference is observed between the two estimation approaches, with the Jackknife-based
estimates consistently lying slightly above those obtained using OLS. This pattern suggests that the
Jackknife method produces parameter estimates that are less influenced by extreme observations,
thereby yielding greater robustness to data variability.

The visual comparison is supported by the MAPE results, which show that the Jackknife method
achieves a lower prediction error (24.4%) compared to the OLS method (26.1%). This indicates that the
Jackknife-based Hull-White model provides superior predictive accuracy relative to OLS. Although the
difference in MAPE values may appear modest, it is actuarially meaningful, as even small differences
in estimated interest rates can lead to substantial changes in discount factors. Consequently, these
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differences have direct implications for the valuation of actuarial liabilities and the assessment of
funding adequacy in pension and long-term benefit schemes.

Interest Rate Estimation of Hull-White Model

The interest rate estimation is conducted over 111 annual periods using the Hull-White one-factor
model, with an initial interest rate set at 6%. Parameter estimates obtained from the Ordinary Least
Squares (OLS) and Jackknife methods are used to generate projected short-rate paths, which are
presented in Figure 2. This long projection horizon is intended to capture the long-term dynamics of
interest rates relevant for actuarial valuation and funding analysis.
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Figure 2. Hull-White Model Estimation

Figure 2 illustrates that the projected interest rate paths generated by both estimation methods
exhibit similar overall trends, indicating consistency in capturing the mean-reverting behavior inherent
in the Hull-White model. The simulated interest rates fluctuate around a stable long-term level,
reflecting the balance between the mean reversion mechanism and stochastic volatility. This result
confirms that both OLS and Jackknife estimators yield coherent representations of interest rate dynamics
over extended periods.

Despite the similarity in overall patterns, noticeable differences emerge in the level and variability
of the projected interest rates. In most periods, the interest rates estimated using the Jackknife method
tend to lie above those obtained from OLS. This systematic difference is also reflected in the average
projected interest rates, where the Jackknife-based estimates produce a higher mean value (0.0678)
compared to the OLS-based estimates (0.0665). The relatively higher interest rate levels generated by
the Jackknife method suggest that it is less influenced by extreme observations in the original dataset
and therefore provides greater robustness to data variability.

From an actuarial perspective, these differences are economically meaningful. Higher projected
interest rates lead to lower discount factors, which in turn reduce the present value of future benefit
obligations. Consequently, the use of Jackknife-based parameter estimates may result in lower actuarial
liabilities and improved funding indicators compared to those derived from OLS estimates. Therefore,
although the numerical differences between the two estimation methods appear modest, their
implications for long-term actuarial valuation and funding adequacy can be substantial.

Actuarial Calculation for the Frozen Initial Liability Method

The Hull-White interest rate model is applied in actuarial valuation using the Frozen Initial
Liability (FIL) method, which assumes that benefit accruals are fixed at the valuation date and no
additional service credits are accumulated thereafter. The initial monthly lifetime annuity is first
calculated using commutation functions that incorporate survival probabilities and discount factors
derived from the Hull-White estimated interest rate paths. The valuation is conducted for retirement
ages of 58 and 60 years using parameter estimates obtained from both the Ordinary Least Squares (OLS)
and Jackknife methods, with the resulting monthly annuity values presented in Table 4

Table 4. Monthly Annuity

Age Annuity Using OLS Annuity using Jackknife
58 19,0010 16,9269
60 22,6211 18,6175

The results indicate that the annuity values computed using Jackknife-based interest rate
estimates are consistently lower than those obtained under OLS for both retirement ages. This outcome
reflects the relatively higher interest rates generated by the Jackknife method, which produce stronger
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discounting effects and thus reduce the present value of annuity payments. The pension benefit
calculation also accounts for the accumulated salary up to retirement, assuming an annual salary growth
rate of 3%, with cumulative growth naturally slowing as retirement approaches. Overall, these findings
highlight the sensitivity of actuarial liabilities to interest rate assumptions and demonstrate that the
choice of estimation method within the Hull-White framework has a material impact on annuity
valuation under the Frozen Initial Liability approac

a. Normal Contribution and Actuarial Liability

The calculation of normal contributions under the Frozen Initial Liability (FIL) method is
influenced by both the contribution amount per participant and the number of active participants in
each period. Under the FIL framework, the normal contribution per active participant remains
constant from the time an individual joins the pension scheme until retirement, reflecting the
assumption that benefit accruals are fixed at the valuation date. Consequently, changes in total normal
contributions over time are primarily driven by demographic factors, particularly participant entry
and exit from the program, rather than by adjustments in contribution rates. In this study, normal
contributions are calculated based on interest rates generated by the Hull-White model using both
Ordinary Least Squares (OLS) and Jackknife parameter estimation methods.
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Figure 3a. Normal Contribution using OLS Figure 3b. Normal Contribution using
Method Jackknife Method

Figures 3a and 3b illustrate the evolution of normal contributions derived from Hull-White
interest rates estimated using OLS and Jackknife methods, respectively. In both figures, normal
contributions remain stable over an extended initial period, consistent with the core assumption of
the FIL method for active participants. A sharp decline is observed in later periods as participants
approach retirement age, which leads to a reduction in the number of active contributors rather than
a change in the contribution structure itself. While the overall patterns produced by both estimation
methods are similar, the Jackknife-based normal contributions are consistently slightly lower than
those obtained using OLS. This difference reflects the higher interest rates estimated under the
Jackknife method, which result in stronger discounting effects and thus lower required normal
contributions. These findings highlight the sensitivity of contribution requirements to interest rate
assumptions and underscore the importance of robust interest rate estimation in actuarial funding
analysis.

The normal contribution amounts estimated in the previous section serve as the basis for
determining the actuarial liabilities that must be reserved by the pension fund. Using these
contributions, actuarial liabilities are calculated over a projection horizon of 37 periods under the
Frozen Initial Liability (FIL) method, with discount rates generated from the Hull-White interest rate
model. Figures 4a and 4b present the projected actuarial liabilities based on interest rate estimates
obtained using the Ordinary Least Squares (OLS) and Jackknife methods, respectively.
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Method Method

Both figures display a clear exponential growth pattern in actuarial liabilities over time. In the
early periods, liabilities remain relatively low, reflecting the long remaining time to retirement and
the stronger impact of discounting. As participants approach retirement age, actuarial liabilities
increase substantially due to the accumulation of pension benefits and the diminishing effect of
discounting over shorter time horizons. Although the overall trajectories of actuarial liabilities under
the OLS and Jackknife methods are similar, the liabilities estimated using the Jackknife method are
consistently lower than those obtained using OLS. This outcome is consistent with the higher interest
rate levels generated by the Jackknife-based Hull-White model, which lead to lower present values
of future pension obligations. These findings underscore the high sensitivity of actuarial liabilities to
interest rate assumptions and highlight the importance of robust interest rate estimation in pension
funding and reserving analysis.

b. Unfunded Actuarial Liability

The computation of Unfunded Actuarial Liability (UAL) is essential for evaluating whether a
pension fund possesses sufficient resources to fulfill its long-term actuarial commitments. UAL
captures the funding position of a pension scheme by comparing actuarial liabilities with the
accumulation of contributions and investment returns, thereby identifying potential funding gaps or
surpluses. In this study, UAL outcomes are illustrated graphically to facilitate a clearer comparison
between estimation approaches.
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Figure 5. UAL Amount Using OLS Method and Jackknife

Figure 5 depicts the evolution of UAL over a 37-period projection horizon calculated under
the Frozen Initial Liability (FIL) method, using interest rates generated by the Hull-White model
with parameters estimated via Ordinary Least Squares (OLS) and Jackknife methods. Both curves
exhibit a clear and persistent downward trajectory, with UAL values becoming progressively more
negative as time advances. This pattern indicates that actuarial liabilities remain fully funded
throughout the projection period, and that the pension scheme consistently operates in a surplus
position rather than experiencing funding deficits.

A closer examination of the figure reveals systematic differences between the two estimation
methods. The UAL series derived from the OLS-based Hull-White model lies below that obtained
using the Jackknife method across most periods, implying that the OLS approach produces more
negative UAL values and therefore a larger funding surplus. The divergence between the two curves
gradually widens over time, reflecting the cumulative effect of differences in interest rate estimates
on discounting future pension obligations. These differences arise primarily from variations in the
estimated interest rate paths. The Jackknife method yields relatively higher interest rates compared
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to OLS, which results in stronger discounting of future liabilities and consequently lower present
values of actuarial obligations. As a result, although both methods indicate a surplus position, the
magnitude of the surplus is smaller under the Jackknife approach. Overall, Figure 5 highlights the
sensitivity of pension funding outcomes to interest rate estimation methods and underscores the
importance of robust interest rate modeling in assessing actuarial funding adequacy and long-term
pension sustainability.

CONCLUSION

This study provides empirical evidence on the implications of interest rate estimation methods
within the Hull-White framework for actuarial valuation. The results demonstrate that the Jackknife-
based parameter estimation produces a slightly higher average interest rate of 0.0678 compared to
0.0665 obtained using the Ordinary Least Squares (OLS) method. More importantly, the Jackknife
approach yields a lower prediction error, as reflected by a Mean Absolute Percentage Error (MAPE) of
24.4%, compared to 26.1% under OLS. These findings indicate that the Jackknife method enhances
estimation robustness by reducing sensitivity to individual observations, which is particularly relevant
given the relatively small sample size of the interest rate data used in this study.

When the estimated interest rates are applied to actuarial calculations under the Frozen Initial
Liability (FIL) method, both estimation approaches result in negative Unfunded Actuarial Liability
(UAL) values over the projection horizon, indicating that actuarial liabilities are fully funded and that
the pension scheme operates in a surplus position. However, the magnitude of the surplus differs across
methods. Specifically, the UAL values derived from the Jackknife-based Hull-White model are
consistently less negative than those obtained using OLS, implying a smaller surplus despite the higher
estimated interest rates. This outcome confirms the inverse relationship between discount rates and
actuarial surplus, whereby higher interest rates reduce the present value of future pension obligations
and consequently lower the measured surplus.

The novelty of this study lies in the integration of a robustness-oriented resampling technique,
namely the Jackknife method, into the parameter estimation of the Hull-White interest rate model and
its direct application to actuarial valuation using the Frozen Initial Liability approach. Unlike prior
studies that rely predominantly on conventional OLS estimation, this research demonstrates that even
modest improvements in interest rate estimation accuracy can lead to materially different actuarial
outcomes, particularly in terms of annuity values, normal contributions, and funding surpluses. By
explicitly linking interest rate estimation robustness to actuarial funding indicators, this study
contributes new insights to the actuarial literature and underscores the importance of methodological
choices in interest rate modeling for pension funding adequacy and actuarial decision-making.
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