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ABSTRACT 

Water quality is a key indicator of a community’s health and welfare, yet it has deteriorated significantly 

due to pollution caused by human activities. This study aimed to evaluate Geographically Weighted 

Logistic Regression’s (GWLR) ability to handle spatial nonstationarity in the relationship between 

explanatory factors and water quality status in Pontianak City, and to compare its performance with 

logistic regression. Three modelling approaches were applied to classify water as polluted or non-

polluted: (i) logistic regression with spatially invariant) parameters; (ii) GWLR with a fixed Gaussian 

kernel, producing spatially varying parameters using a fixed bandwidth; and (iii) GWLR with an 

adaptive Gaussian kernel, producing spatially varying parameters using an adaptive bandwidth. Model 

performance was compared using Akaike’s Information Criterion (AIC) and classification accuracy. 

The GWLR model with a fixed Gaussian kernel produced an AIC of 22.52, whereas the logistic 

regression model produced a slightly lower AIC of 22.39; both models achieved a classification 

accuracy of 92.86%, with the adaptive-kernel GWLR showing comparable classification performance. 

These results indicate that, for the parameter settings considered, GWLR offered performance 

comparable to, but not substantially better than logistic regression for modelling the factors affecting 

water quality, despite its capacity to address spatial nonstationarity. 
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INTRODUCTION 

Water quality is a critical environmental and public health issue, particularly in rapidly growing 

cities such as Pontianak. Reports from local environmental agencies have revealed rising levels of water 

pollution in rivers and shallow groundwater, caused by domestic waste, industrial effluents and 

inadequate sanitation infrastructure (Panggabean & Debataraja, 2025). These conditions are of particular 

concern because most Pontianak residents rely on these water sources for daily use, which makes 

identifying pollution determinants an urgent priority. 

In many environmental studies, including water quality assessments, data often includes 

information on the geographical location where measurements were taken, known as spatial data 

(Debataraja & Kusnandar, 2023). Spatial data provides essential information on spatial patterns, 

gradients and regional variations influencing environmental phenomena (Hosmer et al., 2013). Logistic 

regression is a commonly used statistical method for analyzing the relationship between a dichotomous 

dependent variable such as polluted versus non-polluted water and one or more independent variables. 

However, traditional logistic regression assumes that the relationship between predictors and the 

response is constant across all locations. Environmental processes often vary spatially, and this spatial 

heterogeneity can cause models to misrepresent local conditions. 

To address this limitation, Geographically Weighted Logistic Regression (GWLR) was 

developed as a spatial extension of logistic regression. GWLR incorporates location-specific parameter 

estimation by applying a geographical weighting function that assigns weights to nearby observations 

(Omrani et al., 2025). Unlike logistic regression, which assumes uniform coefficients, GWLR allows 

coefficients to vary across space, capturing spatial non-stationarity in the relationships between 

variables. The choice of weighting kernel also affects performance: the fixed Gaussian kernel uses a 

constant bandwidth across the study area, whereas the adaptive Gaussian kernel adjusts the bandwidth 

according to data density, offering greater flexibility in areas with sparse or clustered observations. 

Previous studies on water quality in Pontianak have employed a variety of spatial and statistical 

methods, such as discriminant analysis, spatial mapping and regression-based approaches (Debataraja 

et al., 2019; Debataraja & Kusnandar, 2023; Kusnandar et al., 2019, 2020, 2022; Kusnandar, Debataraja, 

& Fitriani, 2021; Kusnandar, Debataraja, & Utari, 2021). While these studies emphasise the importance 

of spatial techniques for interpreting environmental data, they typically rely on models or descriptive 

spatial analysis. They do not explicitly test whether allowing regression coefficients to vary across space 

improves model performance compared to standard logistic regression. Furthermore, to the best of our 

knowledge, no previous study on Pontianak’s water quality has systematically evaluated geographically 

weighted logistic regression (GWLR) using different kernel specifications. In particular, the 

comparative performance of GWLR with a fixed (permanent) Gaussian kernel and GWLR with an 

adaptive Gaussian kernel has not been examined, even though these two kernels represent distinct 

strategies for handling spatial heterogeneity in areas with varying sampling densities. The present study 

addresses this methodological gap by applying and comparing logistic regression, GWLR with a fixed 

Gaussian kernel and GWLR with an adaptive Gaussian kernel, to identify the most appropriate 

modelling approach for analyzing the factors affecting water quality in Pontianak City. 

In view of the escalating urgency of water contamination and the existence of spatial 

heterogeneity across Pontianak, a more comprehensive modelling approach is imperative. The objective 

of this study is to make a comparison between the performance of Logistic Regression (GWLR) and 

two GWLR specifications – GWLR with a fixed Gaussian kernel and GWLR with an adaptive Gaussian 

kernel – in order to ascertain which model is more effective in identifying the factors influencing water 

quality in Pontianak City. By explicitly evaluating the advantages and limitations of spatially varying 

parameter models, this study contributes to improving local environmental assessment, policymaking, 

and public health protection. 

 

MATERIALS AND METHODS  

This study used water sample data collected from 42 locations in Pontianak City using a stratified 

random sampling method (Debataraja, et.al., 2018). This sampling was used to ensure that water samples 

represented the spatial and environmental across Pontianak City, where water quality conditions differ 

by area. Dividing the study area into strata and randomly selecting locations within each stratum reduces 

sampling bias and prevents certain zones from being over or underrepresented.  The dependent variable, 

Y, was the water quality status, which was defined using the Pollution Index (PI), as calculated in 

accordance with Regulation No. 32 of 2017 of the Republic of Indonesia's Minister of Health 

(Kusnandar et al., 2022). The PI was computed from water colour, total dissolved solids and turbidity, 
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following the method described by (Kusnandar et al., 2019). The resulting PI values were classified as 

meeting or not meeting quality standards (i.e. not polluted or lightly polluted). In this study, the PI class 

meeting quality standards consisted of six location points, while the PI class not meeting quality 

standards consisted of 36 location points. These two classes formed the response variable Y, with 𝑌 = 0 

for water meeting quality standards and 𝑌 = 1 for lightly polluted water. The explanatory variables X 

used in the modelling were dissolved oxygen (DO) as 𝑋1, iron (Fe) content as 𝑋2, and chemical oxygen 

demand (COD) as 𝑋3. First, Logistic Regression model was fitted to examine the relationship between 

𝑌and (𝑋1, 𝑋2, 𝑋3), with the probability of a sample being lightly polluted modelled as (Backhaus et al., 

2023; Hosmer et al., 2013) 

𝜋(𝑥) =
𝑒𝑥𝑝(𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3)

1 + 𝑒𝑥𝑝(𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3)
 (1) 

  

To account for spatial heterogeneity, Geographically Weighted Logistic Regression (GWLR) was 

then applied as an extension of logistic regression that incorporates geographical coordinates into the 

model (Isazade et al., 2023). In GWLR, the longitude and latitude (𝑢𝑖, 𝑣𝑖)of each sampling location 

were used to compute Euclidean distances between sites, and the regression coefficients were allowed 

to vary by location (Lessani & Li, 2024): 

𝜋(𝑥𝑖) =
𝑒𝑥𝑝  (𝛽0(𝑢𝑖, 𝑣𝑖) + ∑ 𝛽𝑗(𝑢𝑖, 𝑣𝑖)𝑥𝑗𝑖  

𝑝
𝑗=1 ) 

1 +𝑒𝑥𝑝 (𝛽0(𝑢𝑖, 𝑣𝑖) + ∑ 𝛽𝑗(𝑢𝑖, 𝑣𝑖)𝑥𝑗𝑖
𝑝
𝑗=0  ) 

 
(2) 

with the corresponding logit form (Lessani & Li, 2024): 

𝑔(𝑥𝑖) =𝑙𝑛  [
𝜋(𝑥𝑖)

1 − 𝜋(𝑥𝑖)
]  = 𝛽0(𝑢𝑖, 𝑣𝑖) + ∑ 𝛽𝑗(𝑢𝑖, 𝑣𝑖)𝑥𝑗𝑖

𝑝

𝑗=1

 (3) 

 

The GWLR parameters were estimated using maximum likelihood estimation via an iterative 

procedure (Fikri et al., 2019). A key component of GWLR is the spatial weighting scheme. In this study, 

this was based on the Gaussian kernel. Two types of Gaussian kernel weighting were used: First, a fixed 

Gaussian kernel, where a single bandwith is applied uniformly across the study area and the weights are 

constant and the second, an adaptive Gaussian kernel, where the bandwith 𝑏𝑖varies by location to adapt 

to local data density, with weights 𝑤𝑖𝑘 = exp (−𝑑𝑖𝑘
2 /2𝑏𝑖

2). 

The optimal bandwidth values were obtained for both kernel types using the Cross-Validation 

(CV) method. The overall procedure in this study consisted of the following steps: Computing the 

Pollution Index and classifying samples into polluted and non-polluted categories (defining Y); 

assembling DO, Fe and COD as explanatory variables (defining X); fitting the Logistic Regression 

model; constructing the spatial dataset using the coordinates of each sample point; calculating Euclidean 

distances. Selecting bandwidths via CV; computing spatial weights with fixed and adaptive Gaussian 

kernels; estimating GWLR parameters; and testing the significance of the model coefficients. The 

performance of the logistic regression model and the two GWLR models (with fixed and adaptive 

Gaussian kernels) was then evaluated and compared using Akaike's information criterion (AIC), where 

lower values indicate a better model fit. Classification accuracy was also evaluated, defined as the 

percentage of observations correctly classified as polluted or non-polluted. 

 

RESULTS AND DISCUSSION 

The spatial distribution of the 42 water sampling locations in Pontianak City is shown in Figure 

1. Water samples were collected in 2018 using a stratified random sampling design, and the pollution 

index (PI) at each site was calculated based on the Regulation of the Minister of Health of the Republic 

of Indonesia No. 32 of 2017. The numbers displayed inside each point in Figure 1 represent the sampling 

location IDs, while the point colors indicate the PI class: locations meeting the water quality standard 

(not polluted, n = 6) and locations not meeting the standard (lightly polluted, n = 36). The spatial data 

were processed and mapped using QGIS, and all coordinates reference system to ensure consistency in 

distance and area calculations for subsequent spatial modelling. A north arrow and a scale bar in 

kilometers are included in the map to indicate orientation and spatial extent relevant to the GWLR 

analysis. 
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Figure 1.  Pollution Index Value Classification Map 

 

A logistic regression model was fitted with the R statistical package. Simultaneous testing in 

logistic regression uses the statistical significance of the G test. Based on the results of the analysis, it is 

known that the statistical value of the G test of 48.17552. It is greater than the value of 𝜒(0.1;3)
2  = 6.251. 

This shows that at least one independent variable significantly influences the dependent variable. The 

results of partial testing are conducted to examine which of the independent variables significantly affect 

the dependent variable (Table 1).  
Table 1. Estimation of the Logistic Regression Model Parameters 

Parameter Estimate Standard Error Z 

𝛽0 -7.590 3.782 -2.006 

𝛽1 -0.526 0.720 -0.731 

𝛽2 2.861 1.255 2.279 
 

Based on the results listed in Table 1, the logistic regression model for the factors affecting water quality 

in Pontianak is: 

𝜋(𝑥) =
𝑒𝑥𝑝  (−7.590 − 0.526𝑥1 + 2.861𝑥2) 

1 +𝑒𝑥𝑝  (−7.590 − 0.526𝑥1 + 2.861𝑥2) 
 

 

where 𝑥1 denotes dissolved oxygen (DO) and 𝑥2 denotes iron (Fe). The negative intercept 

−7.590 indicates that, when dissolved oxygen (DO) and iron (Fe) are at their reference levels, the 

baseline probability of a location being lightly polluted is very low. The coefficient for DO (𝛽1 =
−0.526) implies that, holding Fe constant, a one-unit increase in DO decreases the log-odds of the water 

being lightly polluted by 0.526, corresponding to an odds ratio of exp (−0.526) ≈ 0.59; in other words, 

each unit increase in DO reduces the odds of light pollution to about 59% of their previous value (a 

decrease of roughly 41%). In contrast, the Fe coefficient (𝛽2 = 2.861) shows that, for a one-unit increase 

in Fe with DO held constant, the log-odds of light pollution increase by 2.861, corresponding to an odds 

ratio of exp (2.861) ≈ 17.48. This means that each unit increase in Fe multiplies the odds of light 

pollution by about 17.5, indicating that Fe has a much stronger influence on the classification of water 

quality than DO in this model. Meanwhile, the logit transformation of the logistic regression model is 

as follows: 

𝑔(𝑥) = −7.590 − 0.526𝑥1 + 2.861𝑥2 
 

The process of testing the parameters of the GWLR model with Fixed Gaussian Kernel weighting 

is used to determine the factors that influence the quality of river water in Pontianak City. Based on the 

results of the partial test analysis at the first location, the following results are obtained in Table 2. 
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Table 2. Testing Process Parameters of the GWLR Model with Fixed Gaussian Kernel Weighting 

on location (𝑢1, 𝑣1) 

Parameter Estimate Standard Error W 

𝛽0 -7.633 7.559 -1.009 

𝛽1 -0.489 0.790 -0.619 

𝛽2 2.835 0.945 3.000 

𝛽3 0.092 0.017 5.475 

 

Based on Table 2, the GWLR model with Fixed Gaussian Kernel weighting for the location (𝑢1, 𝑣1) is 

as follows (Pardoe, 2021): 

𝜋(𝑥) =
𝑒𝑥𝑝  (−7.633 + 2.835𝑥2 + 0.092𝑥3) 

1 +𝑒𝑥𝑝  (−7.633 + 2.835𝑥2 + 0.092𝑥3) 
 

 

Meanwhile, the logit transformation model of the Fixed Gaussian Kernel weighting model is: 
 

𝑔(𝑥) = −7.633 + 2.835𝑥2 + 0.092𝑥3 
 

This local GWLR model for location (𝑢1, 𝑣1)can be interpreted as follows. The negative intercept 

(−7.633) indicates that, when Fe and COD at this location are at their reference (baseline) levels, the 

underlying probability of the water being lightly polluted is very low. The coefficient for iron (2.835) 

shows that, at location (𝑢1, 𝑣1)and holding COD constant, a one-unit increase in Fe increases the log-

odds of the water being lightly polluted by 2.835, which corresponds to an odds ratio of exp (2.835) ≈
17.03. In other words, each unit increase in Fe at this location multiplies the odds of light pollution by 

about 17 times. Similarly, the COD coefficient (0.092) indicates that, with Fe held constant, a one-unit 

increase in COD increases the log-odds of light pollution by 0.092, corresponding to an odds ratio of 

exp (0.092) ≈ 1.10; thus, the odds of light pollution increase by around 9–10% for each unit increase 

in COD at this site. These local parameter estimates suggest that, for the sampling location (𝑢1, 𝑣1), Fe 

has a much stronger effect on the probability of light pollution than COD in the GWLR model. 
 

Table 3. GWLR Logit Function at 42 Location Points with Fixed Gaussian Kernel Weighting 

Locs Logit Function of GWLR Locs Logit Function of GWLR 

1 𝑔(𝑥) = −7.633 + 2.835𝑥2 + 0.092𝑥3 22 𝑔(𝑥) = −7.579 + 2.847𝑥2 + 0.092𝑥3 

2 𝑔(𝑥) = −7.622 + 2.843𝑥2 + 0.092𝑥3 23 𝑔(𝑥) = −7.577 + 2.849𝑥2 + 0.092𝑥3 

3 𝑔(𝑥) = −7.624 + 2.824𝑥2 + 0.092𝑥3 24 𝑔(𝑥) = −7.506 + 2.849𝑥2 + 0.091𝑥3 

4 𝑔(𝑥) = −7.665 + 2.868𝑥2 + 0.093𝑥3 25 𝑔(𝑥) = −7.519 + 2.867𝑥2 + 0.092𝑥3 

5 𝑔(𝑥) = −7.613 + 2.846𝑥2 + 0.092𝑥3 26 𝑔(𝑥) = −7.537 + 2.864𝑥2 + 0.092𝑥3 

6 𝑔(𝑥) = −7.602 + 2.847𝑥2 + 0.092𝑥3 27 𝑔(𝑥) = −7.493 + 2.884𝑥2 + 0.092𝑥3 

7 𝑔(𝑥) = −7.594 + 2.847𝑥2 + 0.092𝑥3 28 𝑔(𝑥) = −7.548 + 2.863𝑥2 + 0.099𝑥3 

8 𝑔(𝑥) = −7.606 + 2.832𝑥2 + 0.092𝑥3 29 𝑔(𝑥) = −7.545 + 2.869𝑥2 + 0.092𝑥3 

9 𝑔(𝑥) = −7.595 + 2.826𝑥2 + 0.092𝑥3 30 𝑔(𝑥) = −7.557 + 2.874𝑥2 + 0.092𝑥3 

10 𝑔(𝑥) = −7.586 + 2.821𝑥2 + 0.092𝑥3 31 𝑔(𝑥) = −7.555 + 2.872𝑥2 + 0.092𝑥3 

11 𝑔(𝑥) = −7.505 + 2.848𝑥2 + 0.091𝑥3 32 𝑔(𝑥) = −7.555 + 2.866𝑥2 + 0.092𝑥3 

12 𝑔(𝑥) = −7.546 + 2.824𝑥2 + 0.091𝑥3 33 𝑔(𝑥) = −7.555 + 2.858𝑥2 + 0.092𝑥3 

13 𝑔(𝑥) = −7.541 + 2.837𝑥2 + 0.092𝑥3 34 𝑔(𝑥) = −7.575 + 2.857𝑥2 + 0.092𝑥3 

14 𝑔(𝑥) = −7.591 + 2.831𝑥2 + 0.092𝑥3 35 𝑔(𝑥) = −7.579 + 2.856𝑥2 + 0.092𝑥3 

15 𝑔(𝑥) = −7.572 + 2.836𝑥2 + 0.092𝑥3 36 𝑔(𝑥) = −7.580 + 2.8592 + 0.092𝑥3 

16 𝑔(𝑥) = −7.558 + 2.838𝑥2 + 0.092𝑥3 37 𝑔(𝑥) = −7.576 + 2.859𝑥2 + 0.092𝑥3 

17 𝑔(𝑥) = −7.535 + 2.846𝑥2 + 0.092𝑥3 38 𝑔(𝑥) = −7.589 + 2.862𝑥2 + 0.092𝑥3 

18 𝑔(𝑥) = −7.552 + 2.843𝑥2 + 0.092𝑥3 39 𝑔(𝑥) = −7.627 + 2.849𝑥2 + 0.092𝑥3 

19 𝑔(𝑥) = −7.539 + 2.857𝑥2 + 0.092𝑥3 40 𝑔(𝑥) = −7.526 + 2.846𝑥2 + 0.092𝑥3 

20 𝑔(𝑥) = −7.520 + 2.857𝑥2 + 0.092𝑥3 41 𝑔(𝑥) = −7.596 + 2.816𝑥2 + 0.092𝑥3 

21 𝑔(𝑥) = −7.562 + 2.849𝑥2 + 0.092𝑥3 42 𝑔(𝑥) = −7.548 + 2.85𝑥2 + 0.091𝑥3 

 

Table 3 shows that, for all 42 locations, the local GWLR logit functions with fixed Gaussian 

kernel weighting have broadly similar coefficient patterns, but with small spatial variations in both the 

intercept and the slopes for 𝑥2and 𝑥3. In all locations, the coefficient of iron (𝑥2) is positive and relatively 

large (approximately 2.82–2.88), indicating that higher Fe content consistently increases the log-odds 

of the water being lightly polluted. This corresponds to an odds ratio of about exp (2.84) ≈ 17, meaning 
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that, at any given location, a one-unit increase in Fe multiplies the odds of light pollution by roughly 17 

times, holding COD constant. The coefficient of COD (𝑥3) is also positive but much smaller in 

magnitude (around 0.091–0.099), implying that a one-unit increase in COD increases the odds of light 

pollution by about 9–10% (exp (0.092) ≈ 1.10), conditional on Fe. The intercepts, which range 

roughly from −7.66to −7.50, indicate that, when both Fe and COD are at their reference levels, the 

baseline probability of light pollution remains low across all locations. Overall, these local parameter 

estimates suggest that, under the fixed Gaussian kernel GWLR model, iron content (𝑥2) has a much 

stronger influence on water quality status than COD (𝑥3), while the small differences in coefficients 

between locations reflect the presence of mild spatial nonstationarity in the effects of these variables. 

The process of testing the parameters of the GWLR model with the Adaptive Gaussian Kernel 

weighting is used to determine the factors that influence the quality of river water in Pontianak City. 

Based on the results of the partial test analysis at the first location, the following results are presented in 

Table 4. 
 

Table 4. Testing the Parameters of the GWLR Model with Adaptive Gaussian Kernel Weighting on location 

(𝑢1, 𝑣1) 

Parameter Estimate Standard Error W 

𝛽0 -7.694 7.559 -1.018 

𝛽2 -0.439 0.790 -0.556 

𝛽3 2.800 0.945 2.964 

 

Based on Table 4, the GWLR model it is that obtained with the Adaptive Gaussian Kernel weighting 

for the location (𝑢1, 𝑣1) is as follows: 
 

𝜋(𝑥) =
𝑒𝑥𝑝  (−7.694 − 0.439𝑥2 + 2.800𝑥3) 

1 +𝑒𝑥𝑝  (−7.694 − 0.439𝑥2 + 2.800𝑥3) 
 

 

Meanwhile, the logit transformation model of the Adaptive Gaussian Kernel weighting is: 
 

𝑔(𝑥) = −7.694 − 0.493𝑥2 + 2.800𝑥3 
 

At location (𝑢1, 𝑣1), the negative intercept (−7.694) indicates that, when DO and Fe are at their 

reference levels, the baseline probability of the water being lightly polluted is very low. The coefficient 

for DO (𝛽1 = −0.439) shows that, holding Fe constant, a one-unit increase in dissolved oxygen 

decreases the log-odds of light pollution by 0.439, corresponding to an odds ratio of exp (−0.439) ≈
0.64. In other words, each unit increase in DO reduces the odds of light pollution to about 64% of their 

previous value (a decrease of roughly 36%). Conversely, the coefficient for Fe (𝛽2 = 2.800) indicates 

that, for a one-unit increase in iron content with DO held constant, the log-odds of light pollution 

increase by 2.800, corresponding to an odds ratio of exp (2.800) ≈ 16.45. Thus, each unit increase in 

Fe multiplies the odds of light pollution by about 16.5, suggesting that iron has a much stronger impact 

on water quality status than dissolved oxygen at this location in the adaptive-kernel GWLR model. 

The process of testing these parameters is repeated at each observation location or the observation 

location(𝑢42, 𝑣42). Variables that significant are those with |𝑊| ≥ 𝑍0,05 = 1.64. The GWLR logit 

weighting function of the Adaptive Gaussian Kernel for 42 observation locations is presented in Table 

5. 
Table 5. GWLR Logit Function at 42 Location Points with Adaptive Gaussian Kernel Weighting 

Locs Logit Function of GWLR Locs Logit Function of GWLR 

1 𝑔(𝑥) = −7.694 + 2.800𝑥2 + 0.093𝑥3 22 𝑔(𝑥) = −7.544 + 2.870𝑥2 + 0.091𝑥3 

2 𝑔(𝑥) = −7.678 + 2.818𝑥2 + 0.092𝑥3 23 𝑔(𝑥) = −7.534 + 2.807𝑥2 + 0.091𝑥3 

3 𝑔(𝑥) = −7,704 + 2.744𝑥2 + 0.092𝑥3 24 𝑔(𝑥) = −7.387 + 2.833𝑥2 + 0.090𝑥3 

4 𝑔(𝑥) = −7.659 + 2.867𝑥2 + 0.093𝑥3 25 𝑔(𝑥) = −7.334 + 2.884𝑥2 + 0.090𝑥3 

5 𝑔(𝑥) = −7.662 + 2.817𝑥2 + 0.092𝑥3 26 𝑔(𝑥) = −7.334 + 2.882𝑥2 + 0.090𝑥3 

6 𝑔(𝑥) = −7,636 + 2.813𝑥2 + 0.092𝑥3 27 𝑔(𝑥) = −7.369 + 2.915𝑥2 + 0.091𝑥3 

7 𝑔(𝑥) = −7.613 + 2.794𝑥2 + 0.091𝑥3 28 𝑔(𝑥) = −7.373 + 2.882𝑥2 + 0.090𝑥3 

8 𝑔(𝑥) = −7.668 + 2.741𝑥2 + 0.091𝑥3 29 𝑔(𝑥) = −7.411 + 2.904𝑥2 + 0.091𝑥3 

9 𝑔(𝑥) = −7.647 + 2.679𝑥2 + 0.091𝑥3 30 𝑔(𝑥) = −7.483 + 2.913𝑥2 + 0.091𝑥3 

10 𝑔(𝑥) = −7.594 + 2.707𝑥2 + 0.090𝑥3 31 𝑔(𝑥) = −7.465 + 2.909𝑥2 + 0.092𝑥3 

11 𝑔(𝑥) = −7.393 + 2.832𝑥2 + 0.090𝑥3 32 𝑔(𝑥) = −7.512 + 2.889𝑥2 + 0.092𝑥3 

12 𝑔(𝑥) = −7.486 + 2.768𝑥2 + 0.090𝑥3 33 𝑔(𝑥) = −7.445 + 2.858𝑥2 + 0.091𝑥3 
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Locs Logit Function of GWLR Locs Logit Function of GWLR 

13 𝑔(𝑥) = −7,415 + 2.768𝑥2 + 0.089𝑥3 34 𝑔(𝑥) = −7.526 + 2.849𝑥2 + 0.091𝑥3 

14 𝑔(𝑥) = −7,635 + 2,672𝑥2 + 0.090𝑥3 35 𝑔(𝑥) = −7.545 + 2.847𝑥2 + 0.091𝑥3 

15 𝑔(𝑥) = −7,514 + 2,704𝑥2 + 0.089𝑥3 36 𝑔(𝑥) = −7.554 + 2.864𝑥2 + 0.092𝑥3 

16 𝑔(𝑥) = −7,443 + 2,737𝑥2 + 0.089𝑥3 37 𝑔(𝑥) = −7.544 + 2.898𝑥2 + 0.092𝑥3 

17 𝑔(𝑥) = −7,373 + 2,799𝑥2 + 0.089𝑥3 38 𝑔(𝑥) = −7.589 + 2.872𝑥2 + 0.092𝑥3 

18 𝑔(𝑥) = −7.387 + 2.753𝑥2 + 0.089𝑥3 39 𝑔(𝑥) = −7.668 + 2.840𝑥2 + 0.0925𝑥3 

19 𝑔(𝑥) = −7.335 + 2.839𝑥2 + 0.089𝑥3 40 𝑔(𝑥) = −7.377 + 2.811𝑥2 + 0.089𝑥3 

20 𝑔(𝑥) = −7.354 + 2.849𝑥2 + 0.090𝑥3 41 𝑔(𝑥) = −7.630 + 2.705𝑥2 + 0.091𝑥3 

21 𝑔(𝑥) = −7.411 + 2.773𝑥2 + 0.089𝑥3 42 𝑔(𝑥) = −7.351 + 2.798𝑥2 + 0.089𝑥3 

 

Table 5 shows that the relationship between the predictors 𝑥2and 𝑥3 and the log-odds of the event 

is not constant across all locations but varies spatially. The positive coefficients for 𝑥2and 𝑥3 at most 

locations suggest that these variables generally increase the likelihood of the event occurring as they 

increase, although the strength of this effect varies across different locations. This spatially varying 

effect highlights the importance of considering geographic context in modelling, as it allows for more 

accurate predictions and better understanding of the local drivers of the event being studied. 

A comparison of logistic regression models and GWLR with the two weightings is done to find a 

better model in describing the factors that affect water quality in Pontianak. This comparison can be 

seen based on the AIC value and the percentage of classification accuracy (Table 6). 
 

Table 6. Comparison of Model Suitability 

Model AIC Classification Accuracy 

Logistic Regression 22.39 92.86% 

GWLR (Fixed Gaussian Kernel) 22.52 92.86% 

GWLR (Adaptive Gaussian Kernel) 22.81 90.48% 
 

A comparison of the logistic regression and GWLR models with fixed and adaptive Gaussian 

kernel weighting was carried out to identify which approach best describes the factors affecting water 

quality in Pontianak. As shown in Table 6, the smallest AIC value is obtained by the logistic regression 

model (22.39), with a classification accuracy of 92.86%, indicating that this model provides the best 

balance between goodness of fit and model complexity. The GWLR model with a fixed Gaussian kernel 

has a slightly larger AIC (22.52) but the same classification accuracy (92.86%), suggesting that allowing 

coefficients to vary in space does not yield a meaningful improvement in predictive performance for 

these data. The GWLR model with an adaptive Gaussian kernel performs even less favorable, with a 

higher AIC (22.81) and a lower classification accuracy (90.48%), indicating that this more flexible 

spatial weighting scheme does not translate into better model adequacy. Overall, these results imply 

that, despite the presence of spatial information, the added complexity of GWLR is not justified in this 

case, and standard logistic regression is sufficient and more efficient for modelling the factors 

influencing water quality in Pontianak City. 

 

CONCLUSION 

The application of Geographically Weighted Logistic Regression (GWLR) involved the 

utilisation of two distinct types of spatial parameter structures. The first type involved the generation of 

spatially varying parameters using a fixed Gaussian kernel, while the second type utilised an adaptive 

Gaussian kernel to generate spatially varying parameters. The primary objective of this study was to 

assess whether local parameter variation enhanced the performance of the model in comparison to the 

(spatially invariant) logistic regression model. As demonstrated in Table 6, the GWLR model with fixed 

Gaussian kernel weighting yielded an AIC of 22.52 and a classification accuracy of 92.86%. In contrast, 

the GWLR model with adaptive Gaussian kernel weighting resulted in a higher AIC of 22.81 and a 

lower accuracy of 90.48%. The findings suggest that the two types of GWLR parameter structures yield 

divergent levels of model adequacy, with the fixed-kernel GWLR demonstrating a closer alignment with 

the model, and the adaptive-kernel GWLR exhibiting inferior performance. It was determined that 

neither form of GWLR yielded an AIC that was lower than that of the logistic regression model (AIC = 

22.39). This finding indicates that the spatially varying parameter estimates did not result in a 

measurable improvement over the parameters in this dataset. Consequently, the evidence from both 

types of GWLR parameterization suggests that local spatial variation in the coefficients was not 
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substantial enough to improve model performance, and the logistic regression model remained the most 

efficient representation for the relationships between the predictors and water quality status in Pontianak. 
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