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ABSTRACT

Water quality is a key indicator of a community’s health and welfare, yet it has deteriorated significantly
due to pollution caused by human activities. This study aimed to evaluate Geographically Weighted
Logistic Regression’s (GWLR) ability to handle spatial nonstationarity in the relationship between
explanatory factors and water quality status in Pontianak City, and to compare its performance with
logistic regression. Three modelling approaches were applied to classify water as polluted or non-
polluted: (i) logistic regression with spatially invariant) parameters; (ii) GWLR with a fixed Gaussian
kernel, producing spatially varying parameters using a fixed bandwidth; and (iii) GWLR with an
adaptive Gaussian kernel, producing spatially varying parameters using an adaptive bandwidth. Model
performance was compared using Akaike’s Information Criterion (AIC) and classification accuracy.
The GWLR model with a fixed Gaussian kernel produced an AIC of 22.52, whereas the logistic
regression model produced a slightly lower AIC of 22.39; both models achieved a classification
accuracy of 92.86%, with the adaptive-kernel GWLR showing comparable classification performance.
These results indicate that, for the parameter settings considered, GWLR offered performance
comparable to, but not substantially better than logistic regression for modelling the factors affecting
water quality, despite its capacity to address spatial nonstationarity.
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INTRODUCTION

Water quality is a critical environmental and public health issue, particularly in rapidly growing
cities such as Pontianak. Reports from local environmental agencies have revealed rising levels of water
pollution in rivers and shallow groundwater, caused by domestic waste, industrial effluents and
inadequate sanitation infrastructure (Panggabean & Debataraja, 2025). These conditions are of particular
concern because most Pontianak residents rely on these water sources for daily use, which makes
identifying pollution determinants an urgent priority.

In many environmental studies, including water quality assessments, data often includes
information on the geographical location where measurements were taken, known as spatial data
(Debataraja & Kusnandar, 2023). Spatial data provides essential information on spatial patterns,
gradients and regional variations influencing environmental phenomena (Hosmer et al., 2013). Logistic
regression is a commonly used statistical method for analyzing the relationship between a dichotomous
dependent variable such as polluted versus non-polluted water and one or more independent variables.
However, traditional logistic regression assumes that the relationship between predictors and the
response is constant across all locations. Environmental processes often vary spatially, and this spatial
heterogeneity can cause models to misrepresent local conditions.

To address this limitation, Geographically Weighted Logistic Regression (GWLR) was
developed as a spatial extension of logistic regression. GWLR incorporates location-specific parameter
estimation by applying a geographical weighting function that assigns weights to nearby observations
(Omrani et al., 2025). Unlike logistic regression, which assumes uniform coefficients, GWLR allows
coefficients to vary across space, capturing spatial non-stationarity in the relationships between
variables. The choice of weighting kernel also affects performance: the fixed Gaussian kernel uses a
constant bandwidth across the study area, whereas the adaptive Gaussian kernel adjusts the bandwidth
according to data density, offering greater flexibility in areas with sparse or clustered observations.

Previous studies on water quality in Pontianak have employed a variety of spatial and statistical
methods, such as discriminant analysis, spatial mapping and regression-based approaches (Debataraja
etal., 2019; Debataraja & Kusnandar, 2023; Kusnandar et al., 2019, 2020, 2022; Kusnandar, Debataraja,
& Fitriani, 2021; Kusnandar, Debataraja, & Utari, 2021). While these studies emphasise the importance
of spatial techniques for interpreting environmental data, they typically rely on models or descriptive
spatial analysis. They do not explicitly test whether allowing regression coefficients to vary across space
improves model performance compared to standard logistic regression. Furthermore, to the best of our
knowledge, no previous study on Pontianak’s water quality has systematically evaluated geographically
weighted logistic regression (GWLR) using different kernel specifications. In particular, the
comparative performance of GWLR with a fixed (permanent) Gaussian kernel and GWLR with an
adaptive Gaussian kernel has not been examined, even though these two kernels represent distinct
strategies for handling spatial heterogeneity in areas with varying sampling densities. The present study
addresses this methodological gap by applying and comparing logistic regression, GWLR with a fixed
Gaussian kernel and GWLR with an adaptive Gaussian kernel, to identify the most appropriate
modelling approach for analyzing the factors affecting water quality in Pontianak City.

In view of the escalating urgency of water contamination and the existence of spatial
heterogeneity across Pontianak, a more comprehensive modelling approach is imperative. The objective
of this study is to make a comparison between the performance of Logistic Regression (GWLR) and
two GWLR specifications — GWLR with a fixed Gaussian kernel and GWLR with an adaptive Gaussian
kernel — in order to ascertain which model is more effective in identifying the factors influencing water
quality in Pontianak City. By explicitly evaluating the advantages and limitations of spatially varying
parameter models, this study contributes to improving local environmental assessment, policymaking,
and public health protection.

MATERIALS AND METHODS

This study used water sample data collected from 42 locations in Pontianak City using a stratified
random sampling method (Debataraja, et.al., 2018). This sampling was used to ensure that water samples
represented the spatial and environmental across Pontianak City, where water quality conditions differ
by area. Dividing the study area into strata and randomly selecting locations within each stratum reduces
sampling bias and prevents certain zones from being over or underrepresented. The dependent variable,
Y, was the water quality status, which was defined using the Pollution Index (PI), as calculated in
accordance with Regulation No. 32 of 2017 of the Republic of Indonesia's Minister of Health
(Kusnandar et al., 2022). The Pl was computed from water colour, total dissolved solids and turbidity,
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following the method described by (Kushandar et al., 2019). The resulting PI values were classified as
meeting or not meeting quality standards (i.e. not polluted or lightly polluted). In this study, the PI class
meeting quality standards consisted of six location points, while the PI class not meeting quality
standards consisted of 36 location points. These two classes formed the response variable Y, with Y = 0
for water meeting quality standards and Y = 1 for lightly polluted water. The explanatory variables X
used in the modelling were dissolved oxygen (DO) as X, iron (Fe) content as X,, and chemical oxygen
demand (COD) as X;. First, Logistic Regression model was fitted to examine the relationship between
Yand (X, X;, X3), with the probability of a sample being lightly polluted modelled as (Backhaus et al.,
2023; Hosmer et al., 2013)

_exp(Bo + Prx1 + Baxz + P3x3)
(x)

= 1)

1+ exp(Bo + B1x1 + B2xz + B3x3)

To account for spatial heterogeneity, Geographically Weighted Logistic Regression (GWLR) was

then applied as an extension of logistic regression that incorporates geographical coordinates into the

model (Isazade et al., 2023). In GWLR, the longitude and latitude (u;, v;)of each sampling location

were used to compute Euclidean distances between sites, and the regression coefficients were allowed
to vary by location (Lessani & Li, 2024):

exp (.Bo(ui: vi) + X0_, Bi(wy, vi)x;i )
1+exp (ﬁo(ui, v;) + Z?zo Bj(uy, vi)x;; ) (2)

n(x;) =

with the corresponding logit form (Lessani & Li, 2024):
i [0 g+ v 3
g(x;) =ln 1= ) = Bo(u, vy ' 15;’ Uy, Vi) X 3)

J:

The GWLR parameters were estimated using maximum likelihood estimation via an iterative
procedure (Fikri et al., 2019). A key component of GWLR is the spatial weighting scheme. In this study,
this was based on the Gaussian kernel. Two types of Gaussian kernel weighting were used: First, a fixed
Gaussian kernel, where a single bandwith is applied uniformly across the study area and the weights are
constant and the second, an adaptive Gaussian kernel, where the bandwith b;varies by location to adapt
to local data density, with weights w;, = exp (—d?3./2b?).

The optimal bandwidth values were obtained for both kernel types using the Cross-Validation
(CV) method. The overall procedure in this study consisted of the following steps: Computing the
Pollution Index and classifying samples into polluted and non-polluted categories (defining Y);
assembling DO, Fe and COD as explanatory variables (defining X); fitting the Logistic Regression
model; constructing the spatial dataset using the coordinates of each sample point; calculating Euclidean
distances. Selecting bandwidths via CV; computing spatial weights with fixed and adaptive Gaussian
kernels; estimating GWLR parameters; and testing the significance of the model coefficients. The
performance of the logistic regression model and the two GWLR models (with fixed and adaptive
Gaussian kernels) was then evaluated and compared using Akaike's information criterion (AIC), where
lower values indicate a better model fit. Classification accuracy was also evaluated, defined as the
percentage of observations correctly classified as polluted or non-polluted.

RESULTS AND DISCUSSION

The spatial distribution of the 42 water sampling locations in Pontianak City is shown in Figure
1. Water samples were collected in 2018 using a stratified random sampling design, and the pollution
index (PI) at each site was calculated based on the Regulation of the Minister of Health of the Republic
of Indonesia No. 32 of 2017. The numbers displayed inside each point in Figure 1 represent the sampling
location 1Ds, while the point colors indicate the PI class: locations meeting the water quality standard
(not polluted, n = 6) and locations not meeting the standard (lightly polluted, n = 36). The spatial data
were processed and mapped using QGIS, and all coordinates reference system to ensure consistency in
distance and area calculations for subsequent spatial modelling. A north arrow and a scale bar in
kilometers are included in the map to indicate orientation and spatial extent relevant to the GWLR
analysis.
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Figure 1. Pollution Index Value Classification Map

A logistic regression model was fitted with the R statistical package. Simultaneous testing in
logistic regression uses the statistical significance of the G test. Based on the results of the analysis, it is
known that the statistical value of the G test of 48.17552. It is greater than the value of )((20_1;3) =6.251.

This shows that at least one independent variable significantly influences the dependent variable. The
results of partial testing are conducted to examine which of the independent variables significantly affect
the dependent variable (Table 1).

Table 1. Estimation of the Logistic Regression Model Parameters

Parameter Estimate Standard Error Z
Bo -7.590 3.782 -2.006
B -0.526 0.720 -0.731
Bo 2.861 1.255 2.279

Based on the results listed in Table 1, the logistic regression model for the factors affecting water quality
in Pontianak is:
exp (=7.590 — 0.526x; + 2.861x,)

1+exp (—7.590 — 0.526x; + 2.861x;)

w(x) =

where x; denotes dissolved oxygen (DO) and x, denotes iron (Fe). The negative intercept
—7.590 indicates that, when dissolved oxygen (DO) and iron (Fe) are at their reference levels, the
baseline probability of a location being lightly polluted is very low. The coefficient for DO (B, =
—0.526) implies that, holding Fe constant, a one-unit increase in DO decreases the log-odds of the water
being lightly polluted by 0.526, corresponding to an odds ratio of exp (—0.526) =~ 0.59; in other words,
each unit increase in DO reduces the odds of light pollution to about 59% of their previous value (a
decrease of roughly 41%). In contrast, the Fe coefficient (8, = 2.861) shows that, for a one-unit increase
in Fe with DO held constant, the log-odds of light pollution increase by 2.861, corresponding to an odds
ratio of exp (2.861) = 17.48. This means that each unit increase in Fe multiplies the odds of light
pollution by about 17.5, indicating that Fe has a much stronger influence on the classification of water
quality than DO in this model. Meanwhile, the logit transformation of the logistic regression model is
as follows:
g(x) =—=7.590 — 0.526x; + 2.861x,

The process of testing the parameters of the GWLR model with Fixed Gaussian Kernel weighting
is used to determine the factors that influence the quality of river water in Pontianak City. Based on the
results of the partial test analysis at the first location, the following results are obtained in Table 2.
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Table 2. Testing Process Parameters of the GWLR Model with Fixed Gaussian Kernel Weighting
on location (uy, v1)

Parameter Estimate Standard Error W
Bo -7.633 7.559 -1.009
By -0.489 0.790 -0.619
B2 2.835 0.945 3.000
B3 0.092 0.017 5.475

Based on Table 2, the GWLR model with Fixed Gaussian Kernel weighting for the location (uq, v4) is
as follows (Pardoe, 2021):
exp (—7.633 + 2.835x, + 0.092x3)

1+exp (—7.633 + 2.835x, + 0.092x3)

w(x) =

Meanwhile, the logit transformation model of the Fixed Gaussian Kernel weighting model is:
g(x) = —=7.633 4 2.835x, + 0.092x,

This local GWLR model for location (u4, v;)can be interpreted as follows. The negative intercept
(—7.633) indicates that, when Fe and COD at this location are at their reference (baseline) levels, the
underlying probability of the water being lightly polluted is very low. The coefficient for iron (2.835)
shows that, at location (u4, v;)and holding COD constant, a one-unit increase in Fe increases the log-
odds of the water being lightly polluted by 2.835, which corresponds to an odds ratio of exp (2.835) =
17.03. In other words, each unit increase in Fe at this location multiplies the odds of light pollution by
about 17 times. Similarly, the COD coefficient (0.092) indicates that, with Fe held constant, a one-unit
increase in COD increases the log-odds of light pollution by 0.092, corresponding to an odds ratio of
exp (0.092) = 1.10; thus, the odds of light pollution increase by around 9-10% for each unit increase
in COD at this site. These local parameter estimates suggest that, for the sampling location (u4,v,), Fe
has a much stronger effect on the probability of light pollution than COD in the GWLR model.

Table 3. GWLR Logit Function at 42 Location Points with Fixed Gaussian Kernel Weighting

Locs Logit Function of GWLR Locs Logit Function of GWLR

1 g(x) = =7.633 + 2.835x, + 0.092x; 22 g(x) = —=7.579 + 2.847x, + 0.092x;

2 g(x) = —7.622 + 2.843x, + 0.092x; 23 g(x) =—=7.577 + 2.849x, + 0.092x;

3 g(x) =—=7.624 + 2.824x, + 0.092x; 24 g(x) = —=7.506 + 2.849x, + 0.091x;

4 g(x) = —=7.665+ 2.868x, + 0.093x; 25 g(x) =—=7.519 + 2.867x, + 0.092x5
5 g(x) =—-7.613 + 2.846x, + 0.092x; 26 g(x) = —7.537 + 2.864x, + 0.092x5
6
7
8
9

g(x) = —7.602 + 2.847x, + 0.092x; 27  g(x) = —7.493 + 2.884x, + 0.092x;

g(x) = —7.594 + 2.847x, + 0.092x; 28  g(x) = —7.548 + 2.863x, + 0.099x;

g(x) = —7.606 + 2.832x, + 0.092x; 29  g(x) = —7.545 + 2.869x, + 0.092x;

g(x) =—7.595+ 2.826x, + 0.092x; 30 g(x) = —7.557 + 2.874x, + 0.092x5
10 g(x) =-7.586 + 2.821x, + 0.092x3 31 g(x) = =7.555+ 2.872x, + 0.092x;
11  g(x) = —=7.505 + 2.848x, + 0.091x3 32 g(x) = —=7.555+ 2.866x, + 0.092x;
12 g(x) = —7.546 + 2.824x, + 0.091x3 33 g(x) = —=7.555 + 2.858x, + 0.092x5
13 g(x) = —-7.541 + 2.837x, + 0.092x; 34 g(x) =—=7.575+ 2.857x, + 0.092x5
14 g(x) = —7.591 +2.831x, + 0.092x; 35  g(x) = —7.579 + 2.856x, + 0.092x5
15 g(x) = —7.572 + 2.836x, + 0.092x; 36 g(x) = —7.580 + 2.859, + 0.092x5
16 g(x) =—-7.558 + 2.838x, + 0.092x3 37 g(x) =—=7.576 + 2.859x, + 0.092x5
17 g(x) = —7.535 + 2.846x, + 0.092x; 38  g(x) = —7.589 + 2.862x, + 0.092x5
18 g(x) = —7.552 + 2.843x, + 0.092x3 39 g(x) =—=7.627 + 2.849x, + 0.092x;
19 g(x) = —7.539 + 2.857x, + 0.092x; 40  g(x) = —7.526 + 2.846x, + 0.092x5
20 g(x)=-7.520 + 2.857x, + 0.092x; 41 g(x) = =7.596 + 2.816x, + 0.092x;
21  g(x) =—-7.562 + 2.849x, + 0.092x3; 42 g(x) = —=7.548 4+ 2.85x, + 0.091x;

Table 3 shows that, for all 42 locations, the local GWLR logit functions with fixed Gaussian
kernel weighting have broadly similar coefficient patterns, but with small spatial variations in both the
intercept and the slopes for x,and x5. In all locations, the coefficient of iron (x,) is positive and relatively
large (approximately 2.82-2.88), indicating that higher Fe content consistently increases the log-odds
of the water being lightly polluted. This corresponds to an odds ratio of about exp (2.84) = 17, meaning
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that, at any given location, a one-unit increase in Fe multiplies the odds of light pollution by roughly 17
times, holding COD constant. The coefficient of COD (x3) is also positive but much smaller in
magnitude (around 0.091-0.099), implying that a one-unit increase in COD increases the odds of light
pollution by about 9-10% (exp (0.092) = 1.10), conditional on Fe. The intercepts, which range
roughly from —7.66to —7.50, indicate that, when both Fe and COD are at their reference levels, the
baseline probability of light pollution remains low across all locations. Overall, these local parameter
estimates suggest that, under the fixed Gaussian kernel GWLR model, iron content (x,) has a much
stronger influence on water quality status than COD (x3), while the small differences in coefficients
between locations reflect the presence of mild spatial nonstationarity in the effects of these variables.

The process of testing the parameters of the GWLR model with the Adaptive Gaussian Kernel
weighting is used to determine the factors that influence the quality of river water in Pontianak City.
Based on the results of the partial test analysis at the first location, the following results are presented in
Table 4.

Table 4. Testing the Parameters of the GWLR Model with Adaptive Gaussian Kernel Weighting on location

(uy,v1)
Parameter Estimate Standard Error W
Bo -7.694 7.559 -1.018
B -0.439 0.790 -0.556
B 2.800 0.945 2.964

Based on Table 4, the GWLR model it is that obtained with the Adaptive Gaussian Kernel weighting
for the location (u4, v1) is as follows:

exp (—7.694 — 0.439x, + 2.800x;)
1 +exp (—7.694 — 0.439x, + 2.800x3)

n(x) =

Meanwhile, the logit transformation model of the Adaptive Gaussian Kernel weighting is:
g(x) = —7.694 — 0.493x, + 2.800x;

At location (uq, v;), the negative intercept (—7.694) indicates that, when DO and Fe are at their
reference levels, the baseline probability of the water being lightly polluted is very low. The coefficient
for DO (B, = —0.439) shows that, holding Fe constant, a one-unit increase in dissolved oxygen
decreases the log-odds of light pollution by 0.439, corresponding to an odds ratio of exp (—0.439) =
0.64. In other words, each unit increase in DO reduces the odds of light pollution to about 64% of their
previous value (a decrease of roughly 36%). Conversely, the coefficient for Fe (8, = 2.800) indicates
that, for a one-unit increase in iron content with DO held constant, the log-odds of light pollution
increase by 2.800, corresponding to an odds ratio of exp (2.800) = 16.45. Thus, each unit increase in
Fe multiplies the odds of light pollution by about 16.5, suggesting that iron has a much stronger impact
on water quality status than dissolved oxygen at this location in the adaptive-kernel GWLR model.

The process of testing these parameters is repeated at each observation location or the observation
location(uyy, v42). Variables that significant are those with |[W| > Z; o5 = 1.64. The GWLR logit
weighting function of the Adaptive Gaussian Kernel for 42 observation locations is presented in Table
5.

Table 5. GWLR Logit Function at 42 Location Points with Adaptive Gaussian Kernel Weighting
Locs Logit Function of GWLR Locs Logit Function of GWLR
g(x) = =7.694 + 2.800x, + 0.093x; 22  g(x) = —7.544 + 2.870x, + 0.091x,
g(x) = =7.678 + 2.818x, + 0.092x; 23  g(x) = —7.534 + 2.807x, + 0.091x,
g(x) = =7,704 4+ 2.744x, + 0.092x; 24  g(x) = —7.387 + 2.833x, + 0.090x
g(x) = —=7.659 + 2.867x, + 0.093x; 25 g(x) = —=7.334 + 2.884x, + 0.090x;
g(x) = =7.662 4+ 2.817x, + 0.092x; 26  g(x) = —7.334 + 2.882x, + 0.090x;
g(x) = =7,636 + 2.813x, + 0.092x; 27  g(x) = —=7.369 + 2.915x, + 0.091x,
g(x) = =7.613 + 2.794x, + 0.091x; 28  g(x) = —7.373 + 2.882x, + 0.090x
g(x) =—=7.668 + 2.741x, + 0.091x; 29 g(x) = =7.411 + 2.904x, + 0.091x;
g(x) = =7.647 + 2.679x, + 0.091x; 30  g(x) = —7.483 + 2.913x, + 0.091x
g(x) = =7.594 4+ 2.707x, + 0.090x; 31  g(x) = —7.465 + 2.909x, + 0.092x,
g(x) = =7.393 + 2.832x, + 0.090x; 32  g(x) = —7.512 + 2.889x, + 0.092x
g(x) =—-7.486 + 2.768x, + 0.090x; 33 g(x) = —7.445 + 2.858x, + 0.091x,

el
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Locs Logit Function of GWLR Locs Logit Function of GWLR
13 g(x) =-7,415+ 2.768x, + 0.089x3; 34 g(x) = —7.526 + 2.849x, + 0.091x;
14 gx)=-7,635+2,672x, +0.090x; 35 g(x) = —=7.545 4+ 2.847x, + 0.091x;
15 g(x) = —7,514 + 2,704x, + 0.089x; 36  g(x) = —7.554 + 2.864x, + 0.092x;
16 g(x) = —7,443 + 2,737x, + 0.089x; 37  g(x) = —7.544 + 2.898x, + 0.092x;
17 g(x) =-7,373 + 2,799x, + 0.089x3 38 g(x) = —7.589 + 2.872x, + 0.092x;
18 g(x) = —7.387 + 2.753x, + 0.089x; 39  g(x) = —7.668 + 2.840x, + 0.0925x5
19  g(x) =—7.335+2.839x, + 0.089x; 40  g(x) = —7.377 + 2.811x, + 0.089x;
20  g(x) = —7.354 + 2.849x, + 0.090x; 41  g(x) = —7.630 + 2.705x, + 0.091x;
21 g(x)=-7411+2.773x, + 0.089x; 42 g(x) = —7.351 + 2.798x, + 0.089x5

Table 5 shows that the relationship between the predictors x,and x5 and the log-odds of the event
is not constant across all locations but varies spatially. The positive coefficients for x,and x; at most
locations suggest that these variables generally increase the likelihood of the event occurring as they
increase, although the strength of this effect varies across different locations. This spatially varying
effect highlights the importance of considering geographic context in modelling, as it allows for more
accurate predictions and better understanding of the local drivers of the event being studied.

A comparison of logistic regression models and GWLR with the two weightings is done to find a
better model in describing the factors that affect water quality in Pontianak. This comparison can be
seen based on the AIC value and the percentage of classification accuracy (Table 6).

Table 6. Comparison of Model Suitability

Model AIC Classification Accuracy
Logistic Regression 22.39 92.86%
GWLR (Fixed Gaussian Kernel) 22,52 92.86%
GWLR (Adaptive Gaussian Kernel) 22.81 90.48%

A comparison of the logistic regression and GWLR models with fixed and adaptive Gaussian
kernel weighting was carried out to identify which approach best describes the factors affecting water
quality in Pontianak. As shown in Table 6, the smallest AIC value is obtained by the logistic regression
model (22.39), with a classification accuracy of 92.86%, indicating that this model provides the best
balance between goodness of fit and model complexity. The GWLR model with a fixed Gaussian kernel
has a slightly larger AIC (22.52) but the same classification accuracy (92.86%), suggesting that allowing
coefficients to vary in space does not yield a meaningful improvement in predictive performance for
these data. The GWLR model with an adaptive Gaussian kernel performs even less favorable, with a
higher AIC (22.81) and a lower classification accuracy (90.48%), indicating that this more flexible
spatial weighting scheme does not translate into better model adequacy. Overall, these results imply
that, despite the presence of spatial information, the added complexity of GWLR is not justified in this
case, and standard logistic regression is sufficient and more efficient for modelling the factors
influencing water quality in Pontianak City.

CONCLUSION

The application of Geographically Weighted Logistic Regression (GWLR) involved the
utilisation of two distinct types of spatial parameter structures. The first type involved the generation of
spatially varying parameters using a fixed Gaussian kernel, while the second type utilised an adaptive
Gaussian kernel to generate spatially varying parameters. The primary objective of this study was to
assess whether local parameter variation enhanced the performance of the model in comparison to the
(spatially invariant) logistic regression model. As demonstrated in Table 6, the GWLR model with fixed
Gaussian kernel weighting yielded an AIC of 22.52 and a classification accuracy of 92.86%. In contrast,
the GWLR model with adaptive Gaussian kernel weighting resulted in a higher AIC of 22.81 and a
lower accuracy of 90.48%. The findings suggest that the two types of GWLR parameter structures yield
divergent levels of model adequacy, with the fixed-kernel GWLR demonstrating a closer alignment with
the model, and the adaptive-kernel GWLR exhibiting inferior performance. It was determined that
neither form of GWLR yielded an AIC that was lower than that of the logistic regression model (AIC =
22.39). This finding indicates that the spatially varying parameter estimates did not result in a
measurable improvement over the parameters in this dataset. Consequently, the evidence from both
types of GWLR parameterization suggests that local spatial variation in the coefficients was not
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substantial enough to improve model performance, and the logistic regression model remained the most
efficient representation for the relationships between the predictors and water quality status in Pontianak.
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