Main Article Content

Abstract

Indonesia is one of many countries around the world that attempt to suffer from high poverty rates. Since, poverty information in a certain area is a point of interest to researchers and policy makers. One problem faced is for the development program to be carried out more effectively and efficiently, it is necessary to have data availability up to the micro-scale. The technique used to reach the goal is Small Area Estimation (SAE). Fay-herriot (FH) model is one method on Small Area Estimation. Since, the SAE techniques require “borrow strength” across neighbor areas so thus Fay-Herriot model approach was developed by integrating spatial information into the model. This method known as Spatial Fay-Herriot Model (SFH) or Spatial Empirical Best Linear Unbiased Prediction (SEBLUP). This study aims to compare MSE of direct estimation, FH, and SFH Model to see which method gives the best result in estimating expenditure. The MSE value of the estimated SFH is smaller than direct estimation and FH, but it does not significant. It means adding spatial information in the small area estimation model does not give a better prediction than the simple small area estimation which is takes account the area as a specific random effect.

Keywords

Expenditure Percapita Fay-Herriot Model Spatial Fay-Herriot Model

Article Details

How to Cite
Risal, A. (2021). Expenditure Per Capita Model with Spatial Small Area Estimation. Parameter: Journal of Statistics, 1(2), 38-47. https://doi.org/10.22487/27765660.2021.v1.i2.15502

References

  1. Anselin L. (1992). Spatial econometrics: method and models. Boston: Kluwer.
  2. Asfar. (2016). Studi penentuan matriks pembobot spasial optimum dalam pendugaan area kecil. Bogor: Sekolah Pasca Sarjana, IPB.
  3. Matualage, D. (2012). Metode prediksi tak bias linier terbaik empiris spasial pada area kecil untuk pendugaan pengeluaran per kapita. Bogor: Sekolah Pasca Sarjana, IPB.
  4. Muchlisoh, S. (2017). Pengembangan model pendugaan area kecil dengan pengaruh acak waktu mengikuti proses autoregresif ordo pertama. Bogor: Sekolah Pasca Sarjana, IPB.
  5. Pratesi M, Salvati N. (2007). Small area estimation: the EBLUP estimator based on spatially correlated random area effects. Statistical methods and applications. Stat. Meth. & Appl. 17: 113-141.
  6. PKL STIS. (2017). Small Area Estimation: Studi Kemiskinan dan Distribusi Pendapatan di Provinsi Kepulauan Bangka Belitung Tahun 2017. Jakarta: UPPM, STIS.
  7. Rao, J.N.K. (2003). Small Area Estimation. London: John Wiley & Sons.
  8. Rao, J.N.K. (2015). Small Area Estimation. London: John Wiley & Sons.
  9. Zainuddin, H.A. (2016). Kajian transformasi logaritma untuk penduga spatial best linear unbiase prediction pada pendugaan area kecil. Bogor: Sekolah Pasca Sarjana, IPB.