Main Article Content
Abstract
Time series data is data that is prone to autocorrelation. Autocorrelation is a violation of assumptions in Ordinary Least Square regression. The presence of autocorrelation can make parameter estimates, not BLUE (Best, Linear, Unbiased Estimator). Several methods to overcome autocorrelation include Cochrane-Orcutt and Hildreth-Lu methods. Therefore, this study aimed to compare the Cochrane-Orcutt and Hildreth-Lu methods to deal with autocorrelation in the time series regression of the Gorontalo Human Development Index case in 2010 2021. We used HDI data for Gorontalo Province from 2010-to 2021, taken from the BPS-Statistics Indonesia Gorontalo Province. The method we used was Cochrane-Orcutt and Hildreth-Lu in the case of regression using Ordinary Least Squares (OLS) parameter estimation. The results obtained are that the Cochrane-Orcutt and Hildreth-Lu could overcome autocorrelation. The results of the Durbin Watson test after using both methods show no autocorrelation. However, the Hildreth-Lu method resulted in a lower Root Mean Square Error (RMSE) of 0.147 compared to the RMSE of the OLS model of 0.165 and the RMSE of the Cochrane-Orcutt model of 0.196. Therefore, the Hildreth-Lu method was the best method to overcame autocorrelation in this case.
Keywords
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Aprianto, A. (2020). Citation: Metode Cochrane-Orcutt Untuk Mengatasi Autokorelasi Pada estimasi Parameter Ordinary Least Squares. Buletin Ilmiah Mat, Stat, dan Terapannya (Bimaster) 9(1), 95-102.
- Asnidar. (2018). Citation: Pengaruh indeks pembangunan manusia (IPM) dan inflasi terhadap pertumbuhan ekonomi di Kabupaten Aceh Timur. Jurnal Samudera Ekonomika, 2(1): 1-12.
- Badan Pusat Statistik. (2022, Feb 22). Indeks Pembangunan Manusia menurut Provinsi 2019-2021. Retrieved from https://www.bps.go.id/indicator/26/494/1/-metode-baru-indeks-pembangunan-manusia-menurut-provinsi.html.
- Feldstein, M. (1996). Citation: Social security and saving: new time-series evidence. National Tax Journal, 9(2).
- Hildreth, C., Lu, J.Y. (1960). Demand Relations with Autocorrelated Disturbances. Michigan (US): Michigan State University, Agricultural Experiment Station, Department of Agricultural economics.
- Mendenhall, W., Beaver, R.J., Beaver, B.M. (2012). Introduction to Probability & Statistics: 14th Edition. Boston (US): Brooks/Cole, Cengage Learning.
- Montgomery, D.C., Jennings, C.L., & Kulahci, M. (2015). Introduction to Time Series Analysis and Forecasting: 2nd Edition. Hoboken (US): John Wiley and Sons.
- United Nations Development Programme. (2022). New threats to human security in the Anthropocene Demanding greater solidarity. New York(US): UNDP.
- United Nations Development Programme. (2018). Human Development Indices and Indicators: 2018 Statistical Update. New York (US): UNDP.
- Wiranda, L., & Sadikin, M. (2019). Citation: Penerapan Long Short-Term Memory Pada Data Time Series Untuk Memprediksi Penjualan Produk PT. Metiska Farma. JANAPATI (Jurnal Nasional Pendidikan Teknik Informatika), 10, 1–13.