Main Article Content

Abstract

Red chili is one of the commodities with very tall cost changes. The cost variance of red chili can be caused by a huge amount of supply and request. The higher the amount of supply, the lower the cost, and the lower the amount of supply, the higher the cost. This study aims to implement the ARIMA method in forecasting red cayenne pepper prices in Makassar City. Data analysis to forecast red cayenne pepper prices used the ARIMA method with the results show that the price range of chili is from IDR 13,000 to IDR 80,000, with a mean value of IDR 38,218. The model with the minimum SSE and MSE value is ARIMA(1,1,1), so this model be used in time series data modeling for forecasting. The results of forecasting using the best model obtained a MAPE value of 15.90%, which is in the range of 10-20%, so it can be concluded that the ability of the ARIMA(1,1,1) model in forecasting the price of red cayenne pepper includes the good category.

Keywords

ARIMA forecast MAPE red cayenne pepper

Article Details

How to Cite
Arisandi, A., Gaffar, I., & Makkulawu, A. R. (2024). APPLICATION OF THE ARIMA METHOD IN FORECASTING THE PRICE RED CAYENNE PEPPER IN MAKASSAR CITY. Parameter: Journal of Statistics, 4(1), 30-36. https://doi.org/10.22487/27765660.2024.v4.i1.17120

References

  1. Buchori, M., & Sukmono, T. (2018). Peramalan Produksi Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA) di PT. XYZ. PROZIMA (Productivity, Optimization and Manufacturing System Engineering), 2(1), 27–33. https://doi.org/10.21070/prozima.v2i1.1290
  2. Komaria, V., Maidah, N. El, & Furqon, M. A. (2023). Prediksi Harga Cabai Rawit di Provinsi Jawa Timur Menggunakan Metode Fuzzy Time Series Model Lee. Komputika : Jurnal Sistem Komputer, 12(2), 37–47. https://doi.org/10.34010/komputika.v12i2.10644
  3. Putra, J. E., Jamhari, & Perwitasari, H. (2021). Pemrakiraan Harga Cabai Rawit di Kota Surabaya.
  4. Raftery, A. E. (1985). Time series analysis with R. In European Journal of Operational Research (Vol. 20, Issue 2). https://doi.org/10.1016/0377-2217(85)90052-9
  5. Rohmah, N. A. (2024). Prediksi harga cabai di kabupaten ponorogo menggunakan algoritma kalman filter. 01(01).
  6. Siregar, Y. J., Hartono, R., Hardana, A. E., Agribisnis, P. S., Brawijaya, U., & Smoothing, E. (2021). Peramalan harga cabai rawit di kota malang dengan metode holt-winters exponential smoothing. 6, 99–110.
  7. Sukmawati, D., Sulistyowati, L., Karmana, maman H., & Wikarta, E. K. (2016). Fluktuasi Harga Cabai Merah Keriting (Capsicum annum L) DI SENTRA PRODUKSI DAN PASAR INDUK. Mimbar Agribisnis, 25–26.
  8. Wulandari, S. A. (2020). Fluktuasi Harga Cabai Merah Di Masa Pandemi Covid 19 Di Kota Jambi. Jurnal MeA (Media Agribisnis), 5(2), 112. https://doi.org/10.33087/mea.v5i2.82

DB Error: Unknown column 'Array' in 'where clause'