Main Article Content

Abstract

The Consumer Price Index (CPI) is a measure of development success and inflation rates in a country. The CPI is often used to assess the general rate of increase in the prices of goods and services and as a consideration in adjusting salaries, wages, pensions, and other contracts. Therefore, forecasting the CPI is very useful for formulating future policies, including in the health sector. This study aims to create a CPI forecasting model for the health sector in East Java using the ARIMA-GARCH model, namely the integration of the ARIMA model with the GARCH model. The data used were monthly CPI data from January 2020 to December 2023 obtained from the Central Statistics Agency (BPS). The ARIMA model is used to capture long-term trends, while the GARCH model is applied to handle residual heteroscedasticity. The identification results showed that the best ARIMA model is ARIMA(2, 2, 2) with all coefficients statistically significant but heteroscedasticity occurs in the therefore, GARCH modeling is applied to the residuals. Based on the lowest Akaike Information Criterion (AIC) value of 8.342491, the GARCH(1,0) model was selected as the best model. The combined ARIMA(2,2,2)–GARCH(1,0) model produced an AIC value of 18.583 and an RMSE of 0.251383. Residual diagnostic tests indicated that the resulting model meets the assumptions of normal distribution and homogeneity, and there is no significant autocorrelation. The results of this study are expected to contribute to providing predictive information that can be used by the government as a reference in formulating health sector policies, particularly regarding managing the prices of goods and services to maintain economic stability in East Java.

Keywords

ARIMA-GARCH Model Consumer Price Index Forecasting Residual Heteroscedasticity

Article Details

How to Cite
Banat, I. B., Ira Yudistira, Wintan Konitania, & Kuzairi. (2025). FORECASTING MODEL FOR THE DYNAMICS OF THE CONSUMER PRICE INDEX IN THE HEALTH SECTOR IN EAST JAVA USING THE ARIMA-GARCH MODEL. Parameter: Journal of Statistics, 5(2), 68-75. Retrieved from https://bestjournal.untad.ac.id/index.php/parameter/article/view/17627

References

  1. Aina, M. Q., Hendikawati, P., & Walid. (2019). Time Series Modelling Of Stock Price By Modwt-ARIMA Method. UNNES Journal of Mathematics, 79-89.
  2. Anisa, , Yudistira, I., & Yulianto, T. (2015). Application of the ARIMA-GARCH Model for Forecasting Indonesia's Monthly Inflation Rate. Contemporary Mathematics and Applications, 7(1), 1-12.
  3. Beeg, F. A., Paendong, M. S., & Manahonas, M. L. (2024). Penerapan Model Arima-Garch Untuk Peramalan Harga Emas Dunia. d'CartesiaN (Jurnal Matematika dan Aplikasi), 73-79.
  4. Dimashanti, A. R., & S. . (2021). Peramalan Indeks Harga Konsumen Kota Semarang Menggunakan SARIMA Berbantuan Software Minitab. PRISMA, Prosiding Seminar Nasional Matematika, 565-576.
  5. Djami, R. J., & Nanlohy, Y. W. (2022). Peramalan Indeks Harga Konsumen di Kota Ambon Menggunakan Autoregressive Integrated Moving Average (ARIMA) dan Double Exponential Smoothing. Variance Journal of Statistics and Its Applications, 1-14.
  6. Fadhilah, D. N., Parmikanti, K., & Ruchjana, B. N. (2024). Peramalan Return Saham Subsektor Perbankan Menggunakan Model ARIMA-GARCH. Journal Fourier, 1-19.
  7. Intan, N., Haris, M. A., & Arum, P. R. (2024). Peramalan Tingkat Inflasi di Indonesia dengan Metode ARIMAGARCH Berdasarkan Optimasi Kalman Filter. SENADA (Seminar Nasional Sains Data, 568-580.
  8. Islamy, S. N., Anas, Z., & Muhammad, S. (2024). Analisis Peramalan Indeks Harga Konsumen Menggunakan Moving Average Method dan Least Square Method. Journal Of Economics and Business, 53-58.
  9. Kustiara, S., Nur, I. M., & Utami, T. W. (2020). Arch garch Method of Forecasting Consumer Price Index (CPI) in Semarang. Jurnal Litbang Edusaintech (JLE), 14-22.
  10. Landa, I. S., Hatidja, D., & Langi, Y. A. (2024). Peramalan Indeks Harga Konsumen di Kota Palu Menggunakan Metode ARIMA (Autoregressive Integrated Moving Average) dalam Model Intevensi Fungsi Step. IJIDS (Indonesian Journal of Intelligence Data Science), 03(01), 28-38.
  11. Mutiara, A., Fitriyati, N., & Mahmudi. (2023). Analisis Laju Prediksi Inflasi di Indonesia: Perbandingan Model GARCH/ARCH dengan Long Short Term Memory. Lebesgue: Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika , 94-110.
  12. Ristyasari, D. P., & Ahdika, A. (2024). Peramalan Indeks Harga Konsumen Di Kota Bandar Lampung Tahun 2023 Menggunakan Pemodelan Double Exponential Smoothing. Emerging Statistics and Data Science Journal, 145-152.
  13. Salwa, N., Tatsara, N., Amalia, R., & Zohra, A. F. (2018). Peramalan Harga Bitcoin Menggunakan Metode ARIMA (Autoregressive Integrated Moving Average). Journal of Data Analysis, 21-31.
  14. Talumewo, S., Nainggolan, N., & Langi, Y. A. (2023). Penerapan Model ARIMA-GARCH Untuk Peramalan Harga Saham PT Adhi Karya (Persero) Tbk (ADHI.JK). d'CartesiaN (Jurnal Matematika dan Aplikasi), 56-61.
  15. Wanto, A., & Windarto, A. P. (2017). Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation. Sinkron Jurnal & Penelitian Teknik Informatika, 37-44.
  16. Wulandari, R., Sidik, Sari, V., & Laksita, O. T. (2022). Penerapan Metode ARIMA-ARCH/GARCH untuk Meramalkan Harga Saham Hanjaya Mandala Sampoerna Tbk. Journal of Applied Statistics and Data Mining, 14-22.
  17. Yusrini, S, D. F., Hukmah, & M, S. (2024). Analisis Peramalan Jumlah Pengangguran di Provinsi Aceh Tahun 2023-2032 Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA). Proximal: Jurnal Penelitian Matematika dan Pendidikan Matematika, 961-974.

DB Error: Unknown column 'Array' in 'where clause'