Main Article Content
Abstract
Exploration on anticancer candidates on inhibition of Heat Shock Protein (HSP) activity are increasing in the past ten years. Some of HSP90 inhibitor candidates were in third phase of clinical trials. However, this issue is not followed by the emergency of HSP90 inhibitor research in Indonesia, not only study on natural source but also on synthetic candidates. This study aims to look the development of tracking HSP90 inhibitor candidates globally so that it can initiate the related research in Indonesia. Study of HSP90 and its inhibitors were taken from scientific articles in the range from 2009 to 2018. HSP90 and its inhibitors have important values in the dynamics of functions and stability of proteins to maintain survival of cells. This also include the oncogene proteins that involve in cell proliferation such as tyrosine kinases, transcription factors, and regulatory proteins that expression and interaction depend on HSP90. Expression of the transcription factor p53, Alk gene, Wnt gene, glucocorticoid receptors have also links with HSP90 protein activity. Some candidates for inhibitor of HSP90 have been entering clinical trials such as geldanamycin analogues, resorcinol derivatives, and purines analog. Candidates from natural sources that are also being developed such as luteolin, licochalcone A, oleochantal, novobiocin, epigallocathecin gallat, silybin, deguelin, and celastrol from terpenoid class, Apigenin from flavon class, Curcumin, and Gambogat Acid. HSP90 inhibitors which are entering the third phase of clinical trial are ganetespib from the resorcinol derivative and retaspimycin from geldanamisin analog group. Exploration of HSP90 inhibitors from Indonesia natural resources still have great potential to be developed because they have high impact values as anticancer candidates.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Bakthisaran, R., Tangirala, R., & Rao, C. M. (2015). Small heat shock proteins: Role in cellular functions and pathology. Biochimica et Biophysica Acta - Proteins and Proteomics. https://doi.org/10.1016/j.bbapap.2014.12.019
Boridy, S., Le, P. U., Petrecca, K., & Maysinger, D. (2014). Celastrol targets proteostasis and acts synergistically with a heat-shock protein 90 inhibitor to kill human glioblastoma cells. Cell Death and Disease, 5(5), 1–12. https://doi.org/10.1038/cddis.2014.182
Buchner, J., & Li, J. (2013). Structure, Function and Regulation of the Hsp90 Machinery. Biomedical Journal. https://doi.org/10.4103/2319-4170.113230
Calderwood, S. K., & Gong, J. (2016). Heat Shock Proteins Promote Cancer: It’s a Protection Racket. Trends in Biochemical Sciences, 41(4), 311–323. https://doi.org/10.1016/j.tibs.2016.01.003
da Silva, V. C. H., & Ramos, C. H. I. (2012). The network interaction of the human cytosolic 90kDa heat shock protein Hsp90: A target for cancer therapeutics. Journal of Proteomics, 75(10), 2790–2802. https://doi.org/10.1016/j.jprot.2011.12.028
Didenko, T., Duarte, A. M. S., Karagöz, G. E., & Rüdiger, S. G. D. (2012). Hsp90 structure and function studied by NMR spectroscopy. Biochimica et Biophysica Acta - Molecular Cell Research. https://doi.org/10.1016/j.bbamcr.2011.11.009
Didenko, T., Veprintsev, D. B., Duarte, A. M. S., Madl, T., Radli, M., Rüdiger, S. G. D., … Nordhues, B. A. (2014). Hsp90-Tau Complex Reveals Molecular Basis for Specificity in Chaperone Action. Cell, 156(5), 963–974. https://doi.org/10.1016/j.cell.2014.01.037
Garcia-Carbonero, R., Carnero, A., & Paz-Ares, L. (2013). Inhibition of HSP90 molecular chaperones: Moving into the clinic. The Lancet Oncology, 14(9), e358–e369. https://doi.org/10.1016/S1470-2045(13)70169-4
Giommarelli, C., Zuco, V., Favini, E., Pisano, C., Dal Piaz, F., De Tommasi, N., & Zunino, F. (2010). The enhancement of antiproliferative and proapoptotic activity of HDAC inhibitors by curcumin is mediated by Hsp90 inhibition. Cellular and Molecular Life Sciences : CMLS. https://doi.org/10.1007/s00018-009-0233-x
Hall, J. A., Seedarala, S., Rice, N., Kopel, L., Halaweish, F., & Blagg, B. S. J. (2015). Cucurbitacin D Is a Disruptor of the HSP90 Chaperone Machinery. Journal of Natural Products. https://doi.org/10.1021/acs.jnatprod.5b00054
Hartson, S. D., & Matts, R. L. (2012). Approaches for defining the Hsp90-dependent proteome. Biochimica et Biophysica Acta - Molecular Cell Research. https://doi.org/10.1016/j.bbamcr.2011.08.013
Haslbeck, V., Kaiser, C. J. O., & Richter, K. (2012). Hsp90 in non-mammalian metazoan model systems. Biochimica et Biophysica Acta - Molecular Cell Research. https://doi.org/10.1016/j.bbamcr.2011.09.004
He, J., Ning, C., Wang, Y., Ma, T., Huang, H., Ge, Y., … Jiang, Y. (2015). Natural plant flavonoid apigenin directly disrupts Hsp90/Cdc37 complex and inhibits pancreatic cancer cell growth and migration. Journal of Functional Foods. https://doi.org/10.1016/j.jff.2015.06.052
Hong, D. S., Banerji, U., Tavana, B., George, G. C., Aaron, J., & Kurzrock, R. (2013). Targeting the molecular chaperone heat shock protein 90 (HSP90): Lessons learned and future directions. Cancer Treatment Reviews, 39(4), 375–387. https://doi.org/10.1016/j.ctrv.2012.10.001
Iqbal, M. K., Liu, J., Nabi, F., Rehman, M. U., Zhang, H., Tahir, A. H., & Li, J. (2016). Recovery of Chicken Growth Plate by Heat-Shock Protein 90 Inhibitors Epigallocatechin-3-Gallate and Apigenin in Thiram-Induced Tibial Dyschondroplasia. Avian Diseases. https://doi.org/10.1637/11425-041816-Reg
Javid, B., MacAry, P. A., & Lehner, P. J. (2014). Structure and Function: Heat Shock Proteins and Adaptive Immunity. The Journal of Immunology. https://doi.org/10.4049/jimmunol.179.4.2035
Jhaveri, K., Taldone, T., Modi, S., & Chiosis, G. (2012). Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Biochimica et Biophysica Acta - Molecular Cell Research. https://doi.org/10.1016/j.bbamcr.2011.10.008
Kadota, Y., & Shirasu, K. (2012). The HSP90 complex of plants. Biochimica et Biophysica Acta - Molecular Cell Research. https://doi.org/10.1016/j.bbamcr.2011.09.016
Karagöz, G. E., Duarte, A. M. S., Akoury, E., Ippel, H., Biernat, J., Morán Luengo, T., … Rüdiger, S. G. D. (2014). Hsp90-tau complex reveals molecular basis for specificity in chaperone action. Cell. https://doi.org/10.1016/j.cell.2014.01.037
Karagöz, G. E., & Rüdiger, S. G. D. (2015). Hsp90 interaction with clients. Trends in Biochemical Sciences, 40(2), 117–125. https://doi.org/10.1016/j.tibs.2014.12.002
Kim, W. Y., Oh, S. H., Woo, J. K., Hong, W. K., & Lee, H. Y. (2009). Targeting heat shock protein 90 overrides the resistance of lung cancer cells by blocking radiation-induced stabilization of hypoxia-inducible factor-1α. Cancer Research, 69(4), 1624–1632. https://doi.org/10.1158/0008-5472.CAN-08-0505
Klaić, L., Trippier, P. C., Mishra, R. K., Morimoto, R. I., & Silverman, R. B. (2011). Remarkable stereospecific conjugate additions to the Hsp90 inhibitor celastrol. Journal of the American Chemical Society, 133(49), 19634–19637. https://doi.org/10.1021/ja208359a
Kochhar, A., Kopelovich, L., Sue, E., Guttenplan, J. B., Herbert, B. S., Dannenberg, A. J., & Subbaramaiah, K. (2014). p53 modulates Hsp90 ATPase activity and regulates aryl hydrocarbon receptor signaling. Cancer Prevention Research, 7(6), 596–606. https://doi.org/10.1158/1940-6207.CAPR-14-0051
Li, R., Soosairajah, J., Harari, D., Citri, A., Price, J., Ng, H. L., … Bernard, O. (2006). Hsp90 increases LIM kinase activity by promoting its homo-dimerization. The FASEB Journal. https://doi.org/10.1096/fj.05-5258fje
Ludewig, G., & Flor, S. (2013). Harlequin Chromosomes. Brenner’s Encyclopedia of Genetics: Second Edition, (February 2016), 399–401. https://doi.org/10.1016/B978-0-12-374984-0.00684-7
Makhnevych, T., & Houry, W. A. (2012). The role of Hsp90 in protein complex assembly. Biochimica et Biophysica Acta - Molecular Cell Research. https://doi.org/10.1016/j.bbamcr.2011.09.001
Mayer, M. P., & Le Breton, L. (2015). Hsp90: Breaking the symmetry. Molecular Cell, 58(1), 8–20. https://doi.org/10.1016/j.molcel.2015.02.022
Mishra, P., Flynn, J. M., Starr, T. N., & Bolon, D. N. A. (2016). Systematic Mutant Analyses Elucidate General and Client-Specific Aspects of Hsp90 Function. Cell Reports, 15(3), 588–598. https://doi.org/10.1016/j.celrep.2016.03.046
Mollapour, M., & Neckers, L. (2012). Post-translational modifications of Hsp90 and their contributions to chaperone regulation. Biochimica et Biophysica Acta - Molecular Cell Research. https://doi.org/10.1016/j.bbamcr.2011.07.018
Neckers, L., & Trepel, J. B. (2014). Stressing the development of small molecules targeting HSP90. Clinical Cancer Research, 20(2), 275–277. https://doi.org/10.1158/1078-0432.CCR-13-2571
Okayama, S., Kopelovich, L., Balmus, G., Weiss, R. S., Herbert, B. S., Dannenberg, A. J., & Subbaramaiah, K. (2014). P53 protein regulates Hsp90 atpase activity and thereby wnt signaling by modulating Aha1 expression. Journal of Biological Chemistry. https://doi.org/10.1074/jbc.M113.532523
Palermo, C. M., Westlake, C. A., & Gasiewicz, T. A. (2005). <Biochemistry 2005 PalermoEpigallocatechin gallate inhibits aryl hydrocarbon.pdf>, 5041–5052.
Prince, T., Schwartz, H., Mishra, A., Beebe, K., Scroggins, B., Zuehlke, A., … Neckers, L. (2015). Combined HSP90 and kinase inhibitor therapy: Insights from The Cancer Genome Atlas. Cell Stress and Chaperones, 20(5), 729–741. https://doi.org/10.1007/s12192-015-0604-1
Rashmi, R., Santhosh Kumar, T. R., & Karunagaran, D. (2003). Human colon cancer cells differ in their sensitivity to curcumin-induced apoptosis and heat shock protects them by inhibiting the release of apoptosis-inducing factor and caspases. FEBS Letters. https://doi.org/10.1016/S0014-5793(03)00099-1
Richter, K., Haslbeck, M., & Buchner, J. (2010). The Heat Shock Response: Life on the Verge of Death. Molecular Cell. https://doi.org/10.1016/j.molcel.2010.10.006
Riebold, M., Kozany, C., Freiburger, L., Sattler, M., Buchfelder, M., Hausch, F., … Paez-Pereda, M. (2015). A C-terminal HSP90 inhibitor restores glucocorticoid sensitivity and relieves a mouse allograft model of Cushing disease. Nature Medicine, 21(3), 276–280. https://doi.org/10.1038/nm.3776
Roy, N., Nageshan, R. K., Ranade, S., & Tatu, U. (2012). Heat shock protein 90 from neglected protozoan parasites. Biochimica et Biophysica Acta - Molecular Cell Research. https://doi.org/10.1016/j.bbamcr.2011.12.003
Sang, J., Acquaviva, J., Friedland, J. C., Smith, D. L., Sequeira, M., Zhang, C., … Proia, D. A. (2013). Targeted inhibition of the molecular chaperone Hsp90 overcomes ALK inhibitor resistance in non-small cell lung cancer. Cancer Discovery, 3(4), 430–443. https://doi.org/10.1158/2159-8290.CD-12-0440
Siligardi, G., Zhang, M., & Prodromou, C. (2018). The Stoichiometric Interaction of the Hsp90-Sgt1-Rar1 Complex by CD and SRCD Spectroscopy. Frontiers in Molecular Biosciences, 4(January), 1–13. https://doi.org/10.3389/fmolb.2017.00095
Soudry, E., Stern Shavit, S., Hardy, B., Morgenstern, S., Hadar, T., & Feinmesser, R. (2017). Heat shock proteins HSP90, HSP70 and GRP78 expression in medullary thyroid carcinoma. Annals of Diagnostic Pathology, 26, 52–56. https://doi.org/10.1016/j.anndiagpath.2016.11.003
Takai, H., Xie, Y., De Lange, T., & Pavletich, N. P. (2010). Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes. Genes and Development. https://doi.org/10.1101/gad.1956410
Verba, K. A., Wang, R. Y. R., Arakawa, A., Liu, Y., Shirouzu, M., Yokoyama, S., & Agard, D. A. (2016). Atomic structure of Hsp90-Cdc37-Cdk4 reveals that Hsp90 traps and stabilizes an unfolded kinase. Science, 352(6293), 1542–1547. https://doi.org/10.1126/science.aaf5023
Wang, R., Zhang, Y., Kieffer, M., Yu, H., Kepinski, S., & Estelle, M. (2016). HSP90 regulates temperature-dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1. Nature Communications, 7, 1–10. https://doi.org/10.1038/ncomms10269
Wang, X., & Chen, W. (2012). Gambogic Acid is a Novel Anti-cancer Agent that Inhibits Cell Proliferation, Angiogenesis and Metastasis. Anti-Cancer Agents in Medicinal Chemistry, 12(8), 994–1000. https://doi.org/10.2174/187152012802650066
Whitesell, L., & Lin, N. U. (2012). HSP90 as a platform for the assembly of more effective cancer chemotherapy. Biochimica et Biophysica Acta - Molecular Cell Research. https://doi.org/10.1016/j.bbamcr.2011.12.006
Whitesell, L., & Lindquist, S. L. (2005). HSP90 and the chaperoning of cancer. Nature Reviews Cancer, 5(10), 761–772. https://doi.org/10.1038/nrc1716
Whitley, D., Goldberg, S. P., & Jordan, W. D. (1999). Heat shock proteins: A review of the molecular chaperones. Journal of Vascular Surgery. https://doi.org/10.1016/S0741-5214(99)70329-0
Wijaya, F. F., Santosa, L. A., & Waspadji, S. (2009). Role of heat shock protein in insulin resistance. Majalah Kedokteran Indonesia, 58, 122–127.
Wu, J., Liu, T., Rios, Z., Mei, Q., Lin, X., & Cao, S. (2017). Heat Shock Proteins and Cancer. Trends in Pharmacological Sciences, 38(3), 226–256. https://doi.org/10.1016/j.tips.2016.11.009
Yin, Z., Henry, E. C., & Gasiewicz, T. A. (2009). (-)-Epigallocatechin-3-gallate is a novel Hsp90 inhibitor. Biochemistry, 48(2), 336–345. https://doi.org/10.1021/bi801637q
Yu, Y., Hamza, A., Zhang, T., Gu, M., Zou, P., Newman, B., … Sun, D. (2010). Withaferin A targets heat shock protein 90 in pancreatic cancer cells. Biochemical Pharmacology, 79(4), 542–551. https://doi.org/10.1016/j.bcp.2009.09.017
Zhao, H., Moroni, E., Colombo, G., & Blagg, B. S. J. (2014). Identification of a new scaffold for Hsp90 C-terminal inhibition. ACS Medicinal Chemistry Letters, 5(1), 84–88. https://doi.org/10.1021/ml400404s
Zhao, H., Yan, B., Peterson, L. B., & Blagg, B. S. J. (2012). 3-arylcoumarin derivatives manifest anti-proliferative activity through Hsp90 inhibition. ACS Medicinal Chemistry Letters, 3(4), 327–331. https://doi.org/10.1021/ml300018e