Main Article Content

Abstract

An effort to improve the solubility of albendazole (ABZ), an anthelmintic drug has been successfully carried out through the formation of multicomponent crystal with dl-malic acid (MAL). Construction of phase solubility curve of ABZ in MAL solution and crystal morphological observations after recrystallization in the acetone-ethanol (9:1) mixture were performed for initial prediction of multicomponent crystal formation. ABZ-MAL multicomponent crystal was prepared by wet grinding or also known as solvent-drop grinding (SDG) with acetone-ethanol (9:1) mixture as a solvent followed by characterization of the multicomponent crystal formation by powder X-ray diffraction and Fourier transform infrared (FTIR) methods. The solubility of ABZ-MAL multicomponent crystal was tested in water at ambient temperature and in pH 1.2, 4.5 and 6.8 of buffered solutions at 37°C. The phase solubility curve of the ABZ in the MAL solution showed type Bs. The ABZ-MAL mixture has a different crystalline morphology than pure ABZ and MAL after recrystallization in the acetone-ethanol mixture (9:1). The powder X-ray diffraction pattern and the FTIR spectrum of ABZ-MAL from SDG different from intact ABZ and MAL powder X-ray diffraction patterns and these results can indicate the ABZ-MAL multicomponent crystal formation. The ABZ-MAL multicomponent crystal has better solubility than pure ABZ in all media used. These results can be concluded that ABZ-MAL multicomponent crystal can be prepared by solvent-drop grinding method with acetone-ethanol (9:1) mixture as a solvent and can increase the solubility of albendazole.

Keywords

Albendazole DL-Malic acid Solvent-drop grinding Phase solubility

Article Details

How to Cite
Alatas, F., Abdul Azizsidiq, F., Hartyana Sutarna, T., Ratih, H., & Nurono Soewandhi, S. (2020). Perbaikan Kelarutan Albendazol Melalui Pembentukan Kristal Multikomponen dengan Asam Malat: Improvement of Albendazole Solubility Through Multicomponent Crystal Formation with Malic Acid. Jurnal Farmasi Galenika (Galenika Journal of Pharmacy) (e-Journal), 6(1), 114 - 123. https://doi.org/10.22487/j24428744.2020.v6.i1.14998

References

  1. Alatas, F., Aprilliana, M., & Gozali, D. (2017). The Preparation and Solubility of Loratadine-Fumaric Acid Binary Mixture. Asian Journal of Pharmaceutical and Clinical Research, 10(1), 331–334.
  2. Babu, N. J., & Nangia, A. (2011). Solubility advantage of amorphous drugs and pharmaceutical cocrystals. Crystal Growth and Design, 11(7), 2662–2679. https://doi.org/https://doi.org/10.1021/cg200492w
  3. Babu, N. J., Sanphui, P., & Nangia, A. (2012). Crystal engineering of stable temozolomide cocrystals. Chemistry - An Asian Journal, 7(10), 2274–2285. https://doi.org/10.1002/asia.201200205
  4. Berry, D. J., & Steed, J. W. (2016). Pharmaceutical cocrystals, salts and multicomponent systems; intermolecular interactions and property based design. Advanced Drug Delivery Reviews. https://doi.org/10.1016/j.addr.2017.03.003
  5. Braga, D., Maini, L., & Grepioni, F. (2013). Mechanochemical preparation of co-crystals. Chemical Society Reviews, 42(18), 7638. https://doi.org/doi.org/10.1039/C3CS60014A
  6. Córdova-villanueva, E. N., Rodríguez-ruiz, C., Sánchez-, O., Rivera-islas, J., Herrera-ruiz, D., Morales-rojas, H., & Höpfl, H. (2018). Diastereomeric salt formation by the # -amino acid RS-Baclofen and L-Malic acid - Stabilization by strong heterosynthons based on hydrogen bonds between RNH3 + and COOH / COO- groups Diastereomeric salt formation by the  -amino acid RS -Baclofen and L -. Crystal Growth & Design, 18(12), 7356–7367. https://doi.org/10.1021/acs.cgd.8b00990
  7. Cugovčan, M., Jablan, J. 2, Lovrić, J., Cinčić, D., Galić, N., Jug, M., & 1. (2017). Biopharmaceutical characterization of praziquantel cocrystals and cyclodextrin complexes prepared by grinding. Journal OfPharmaceutical and Biomedical Analysis, 15(137), 42–53. https://doi.org/10.1016/j.jpba.2017.01.025
  8. Domingos, S., & Duarte, M. T. (2015). New forms of old drugs : improving without changing. Journal of Pharmacy and Pharmacology, 67(6), 830–846. https://doi.org/10.1111/jphp.12384
  9. Elder, D. P., Holm, R., & De Diego, H. L. (2013). Use of pharmaceutical salts and cocrystals to address the issue of poor solubility. International Journal of Pharmaceutics, 453(1), 88–100. https://doi.org/http://dx.doi.org/10.1016/j.ijpharm.2012.11.028
  10. Hasa, D., & Jones, W. (2017). Screening for new pharmaceutical solid forms using mechanochemistry: A practical guide. Advanced Drug Delivery Reviews, 117, 147–161. https://doi.org/https://doi.org/10.1016/j.addr.2017.05.001
  11. Horton, J. (2000). Albendazole: a review of anthelmintic efficacy and safety in humans. Parasitology, 121, S113–S132. https://doi.org/10.1017/S0031182000007290
  12. Imchalee, R., & Charoenchaitrakool, M. (2015). Gas anti-solvent processing of a new sulfamethoxazole−l-malic acid cocrystal. Journal of Industrial and Engineering Chemistry, 25, 12–15. https://doi.org/https://doi.org/10.1016/j.jiec.2014.11.009
  13. Kaupp, G. (2009). Mechanochemistry: the varied applications of mechanical bond-breaking. CrystEngComm, 11(3), 388. https://doi.org/10.1039/b810822f
  14. Kawabata, Y., Wada, K., Nakatani, M., Yamada, S., & Onoue, S. (2011). Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications. International Journal of Pharmaceutics, 420(1), 1–10. https://doi.org/10.1016/j.ijpharm.2011.08.032
  15. Khadka, P., Ro, J., Kim, H., Kim, I., Kim, J. T., Kim, H., … Lee, J. (2014). Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian Journal of Pharmaceutical Sciences, 9(6), 304–316. https://doi.org/10.1016/j.ajps.2014.05.005
  16. Leyssens, T., Tumanova, N., Robeyns, K., Candoni, N., & Veesler, S. (2014). Solution cocrystallization, an effective tool to explore the variety of cocrystal systems: caffeine/dicarboxylic acid cocrystals. CrystEngComm, 16, 9603–9611. https://doi.org/10.1039/C4CE01495B
  17. Lindenberg, M., Kopp, S., & Dressman, J. B. (2004). Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. European Journal of Pharmaceutics and Biopharmaceutics, 58(2), 265–278. https://doi.org/https://doi.org/10.1016/j.ejpb.2004.03.001
  18. Liu, M., Hong, C., Yao, Y., Shen, H., Ji, G., Li, G., & Xie, Y. (2016). Development of a pharmaceutical cocrystal with solution crystallization technology: Preparation, characterization, and evaluation of myricetin-proline cocrystals. European Journal of Pharmaceutics and Biopharmaceutics, 107, 151–159. https://doi.org/10.1016/j.ejpb.2016.07.008
  19. Lohani, S., Cooper, H., Jin, X., Nissley, B. P., Manser, K., Rakes, L. H., … Bak, A. (2014). Physicochemical Properties, Form, and Formulation Selection Strategy for a Biopharmaceutical Classification System Class II Preclinical Drug Candidate. Journal of Pharmaceutical Sciences, 103(10), 3007–3021. https://doi.org/10.1002/jps.24088
  20. Martin, F. a., Pop, M. M., Borodi, G., Filip, X., & Kacso, I. (2013). Ketoconazole salt and co-crystals with enhanced aqueous solubility. Crystal Growth and Design, 13(10), 4295–4304. https://doi.org/10.1021/cg400638g
  21. Murtaza, G. (2012). Solubility enhancement of simvastatin: A review. Acta Poloniae Pharmaceutica - Drug Research, 69(4), 581–590.
  22. Nechipadappu, S. K., Tekuri, V., & Trivedi, D. R. (2017). Pharmaceutical Co-Crystal of Flufenamic Acid: Synthesis and Characterization of Two Novel Drug-Drug Co-Crystal. Journal of Pharmaceutical Sciences, 106(5), 1384–1390. https://doi.org/10.1016/j.xphs.2017.01.033
  23. Shimpi, M. R., Childs, S. L., Boström, D., & Velaga, S. P. (2014). New cocrystals of ezetimibe with l-proline and imidazole. CrystEngComm, 16(38), 8984–8993. https://doi.org/10.1039/c4ce01127a
  24. Takeru Higuchi, & Kenneth A. Connors. (1965). Phase solubility techniques. In Advances in Analytical Chemistry and Instrumentation (pp. 117–212). New York: Jonh Wiley & Sons, INC.
  25. Thakuria, R., Delori, A., Jones, W., Lipert, M. P., Roy, L., & Rodríguez-Hornedo, N. (2013). Pharmaceutical cocrystals and poorly soluble drugs. International Journal of Pharmaceutics, 453(1), 101–125. Retrieved from http://dx.doi.org/10.1016/j.ijpharm.2012.10.043
  26. Torrado, S., Torrado, S., Cadorniga, R., & Torrado, J. J. (1996). Formulation parameters of albendazole solution. International Journal of Pharmaceutics, 140(1), 45–50. https://doi.org/10.1016/0378-5173(96)04545-0
  27. Trask, A. V, Haynes, D. a, Motherwell, W. D. S., & Jones, W. (2006). Screening for crystalline salts via mechanochemistry. Chemical Communications (Cambridge, England), (1), 51–53. https://doi.org/10.1039/b512626f
  28. Tsutsumi, S., Iida, M., Tada, N., Kojima, T., Ikeda, Y., Moriwaki, T., … Yamamoto, K. (2011). Characterization and evaluation of miconazole salts and cocrystals for improved physicochemical properties. International Journal of Pharmaceutics, 421(2), 230–236. https://doi.org/10.1016/j.ijpharm.2011.09.034
  29. Venkatesan, P. (1998). Albendazole. Journal of Antimicrobial Chemotherapy, 41(2), 145–147. https://doi.org/10.1093/jac/41.2.145
  30. Wu, H., West, A. R., Vickers, M., Apperley, D. C., & Jones, A. G. (2012). Synthesis, crystallization and characterization of diastereomeric salts formed by ephedrine and malic acid in water. Chemical Engineering Science, 77, 47–56. https://doi.org/10.1016/j.ces.2011.12.007