Main Article Content


An effort to improve the solubility of albendazole (ABZ), an anthelmintic drug has been successfully carried out through the formation of multicomponent crystal with dl-malic acid (MAL). Construction of phase solubility curve of ABZ in MAL solution and crystal morphological observations after recrystallization in the acetone-ethanol (9:1) mixture were performed for initial prediction of multicomponent crystal formation. ABZ-MAL multicomponent crystal was prepared by wet grinding or also known as solvent-drop grinding (SDG) with acetone-ethanol (9:1) mixture as a solvent followed by characterization of the multicomponent crystal formation by powder X-ray diffraction and Fourier transform infrared (FTIR) methods. The solubility of ABZ-MAL multicomponent crystal was tested in water at ambient temperature and in pH 1.2, 4.5 and 6.8 of buffered solutions at 37°C. The phase solubility curve of the ABZ in the MAL solution showed type Bs. The ABZ-MAL mixture has a different crystalline morphology than pure ABZ and MAL after recrystallization in the acetone-ethanol mixture (9:1). The powder X-ray diffraction pattern and the FTIR spectrum of ABZ-MAL from SDG different from intact ABZ and MAL powder X-ray diffraction patterns and these results can indicate the ABZ-MAL multicomponent crystal formation. The ABZ-MAL multicomponent crystal has better solubility than pure ABZ in all media used. These results can be concluded that ABZ-MAL multicomponent crystal can be prepared by solvent-drop grinding method with acetone-ethanol (9:1) mixture as a solvent and can increase the solubility of albendazole.


Albendazole DL-Malic acid Solvent-drop grinding Phase solubility

Article Details

How to Cite
Alatas, F., Abdul Azizsidiq, F., Hartyana Sutarna, T., Ratih, H., & Nurono Soewandhi, S. (2020). Perbaikan Kelarutan Albendazol Melalui Pembentukan Kristal Multikomponen dengan Asam Malat: Improvement of Albendazole Solubility Through Multicomponent Crystal Formation with Malic Acid. Jurnal Farmasi Galenika (Galenika Journal of Pharmacy) (e-Journal), 6(1), 114 - 123.


  1. Alatas, F., Aprilliana, M., & Gozali, D. (2017). The Preparation and Solubility of Loratadine-Fumaric Acid Binary Mixture. Asian Journal of Pharmaceutical and Clinical Research, 10(1), 331–334.
  2. Babu, N. J., & Nangia, A. (2011). Solubility advantage of amorphous drugs and pharmaceutical cocrystals. Crystal Growth and Design, 11(7), 2662–2679.
  3. Babu, N. J., Sanphui, P., & Nangia, A. (2012). Crystal engineering of stable temozolomide cocrystals. Chemistry - An Asian Journal, 7(10), 2274–2285.
  4. Berry, D. J., & Steed, J. W. (2016). Pharmaceutical cocrystals, salts and multicomponent systems; intermolecular interactions and property based design. Advanced Drug Delivery Reviews.
  5. Braga, D., Maini, L., & Grepioni, F. (2013). Mechanochemical preparation of co-crystals. Chemical Society Reviews, 42(18), 7638.
  6. Córdova-villanueva, E. N., Rodríguez-ruiz, C., Sánchez-, O., Rivera-islas, J., Herrera-ruiz, D., Morales-rojas, H., & Höpfl, H. (2018). Diastereomeric salt formation by the # -amino acid RS-Baclofen and L-Malic acid - Stabilization by strong heterosynthons based on hydrogen bonds between RNH3 + and COOH / COO- groups Diastereomeric salt formation by the  -amino acid RS -Baclofen and L -. Crystal Growth & Design, 18(12), 7356–7367.
  7. Cugovčan, M., Jablan, J. 2, Lovrić, J., Cinčić, D., Galić, N., Jug, M., & 1. (2017). Biopharmaceutical characterization of praziquantel cocrystals and cyclodextrin complexes prepared by grinding. Journal OfPharmaceutical and Biomedical Analysis, 15(137), 42–53.
  8. Domingos, S., & Duarte, M. T. (2015). New forms of old drugs : improving without changing. Journal of Pharmacy and Pharmacology, 67(6), 830–846.
  9. Elder, D. P., Holm, R., & De Diego, H. L. (2013). Use of pharmaceutical salts and cocrystals to address the issue of poor solubility. International Journal of Pharmaceutics, 453(1), 88–100.
  10. Hasa, D., & Jones, W. (2017). Screening for new pharmaceutical solid forms using mechanochemistry: A practical guide. Advanced Drug Delivery Reviews, 117, 147–161.
  11. Horton, J. (2000). Albendazole: a review of anthelmintic efficacy and safety in humans. Parasitology, 121, S113–S132.
  12. Imchalee, R., & Charoenchaitrakool, M. (2015). Gas anti-solvent processing of a new sulfamethoxazole−l-malic acid cocrystal. Journal of Industrial and Engineering Chemistry, 25, 12–15.
  13. Kaupp, G. (2009). Mechanochemistry: the varied applications of mechanical bond-breaking. CrystEngComm, 11(3), 388.
  14. Kawabata, Y., Wada, K., Nakatani, M., Yamada, S., & Onoue, S. (2011). Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications. International Journal of Pharmaceutics, 420(1), 1–10.
  15. Khadka, P., Ro, J., Kim, H., Kim, I., Kim, J. T., Kim, H., … Lee, J. (2014). Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian Journal of Pharmaceutical Sciences, 9(6), 304–316.
  16. Leyssens, T., Tumanova, N., Robeyns, K., Candoni, N., & Veesler, S. (2014). Solution cocrystallization, an effective tool to explore the variety of cocrystal systems: caffeine/dicarboxylic acid cocrystals. CrystEngComm, 16, 9603–9611.
  17. Lindenberg, M., Kopp, S., & Dressman, J. B. (2004). Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. European Journal of Pharmaceutics and Biopharmaceutics, 58(2), 265–278.
  18. Liu, M., Hong, C., Yao, Y., Shen, H., Ji, G., Li, G., & Xie, Y. (2016). Development of a pharmaceutical cocrystal with solution crystallization technology: Preparation, characterization, and evaluation of myricetin-proline cocrystals. European Journal of Pharmaceutics and Biopharmaceutics, 107, 151–159.
  19. Lohani, S., Cooper, H., Jin, X., Nissley, B. P., Manser, K., Rakes, L. H., … Bak, A. (2014). Physicochemical Properties, Form, and Formulation Selection Strategy for a Biopharmaceutical Classification System Class II Preclinical Drug Candidate. Journal of Pharmaceutical Sciences, 103(10), 3007–3021.
  20. Martin, F. a., Pop, M. M., Borodi, G., Filip, X., & Kacso, I. (2013). Ketoconazole salt and co-crystals with enhanced aqueous solubility. Crystal Growth and Design, 13(10), 4295–4304.
  21. Murtaza, G. (2012). Solubility enhancement of simvastatin: A review. Acta Poloniae Pharmaceutica - Drug Research, 69(4), 581–590.
  22. Nechipadappu, S. K., Tekuri, V., & Trivedi, D. R. (2017). Pharmaceutical Co-Crystal of Flufenamic Acid: Synthesis and Characterization of Two Novel Drug-Drug Co-Crystal. Journal of Pharmaceutical Sciences, 106(5), 1384–1390.
  23. Shimpi, M. R., Childs, S. L., Boström, D., & Velaga, S. P. (2014). New cocrystals of ezetimibe with l-proline and imidazole. CrystEngComm, 16(38), 8984–8993.
  24. Takeru Higuchi, & Kenneth A. Connors. (1965). Phase solubility techniques. In Advances in Analytical Chemistry and Instrumentation (pp. 117–212). New York: Jonh Wiley & Sons, INC.
  25. Thakuria, R., Delori, A., Jones, W., Lipert, M. P., Roy, L., & Rodríguez-Hornedo, N. (2013). Pharmaceutical cocrystals and poorly soluble drugs. International Journal of Pharmaceutics, 453(1), 101–125. Retrieved from
  26. Torrado, S., Torrado, S., Cadorniga, R., & Torrado, J. J. (1996). Formulation parameters of albendazole solution. International Journal of Pharmaceutics, 140(1), 45–50.
  27. Trask, A. V, Haynes, D. a, Motherwell, W. D. S., & Jones, W. (2006). Screening for crystalline salts via mechanochemistry. Chemical Communications (Cambridge, England), (1), 51–53.
  28. Tsutsumi, S., Iida, M., Tada, N., Kojima, T., Ikeda, Y., Moriwaki, T., … Yamamoto, K. (2011). Characterization and evaluation of miconazole salts and cocrystals for improved physicochemical properties. International Journal of Pharmaceutics, 421(2), 230–236.
  29. Venkatesan, P. (1998). Albendazole. Journal of Antimicrobial Chemotherapy, 41(2), 145–147.
  30. Wu, H., West, A. R., Vickers, M., Apperley, D. C., & Jones, A. G. (2012). Synthesis, crystallization and characterization of diastereomeric salts formed by ephedrine and malic acid in water. Chemical Engineering Science, 77, 47–56.