Main Article Content

Abstract

The present study aims to optimize the natural deep eutectic solvent (NADES) as a green solvent-based microwave-assisted extraction (MAE) of total polyphenols content (TPC) from Mitragyna speciosa Korth Havil leaves using response surface methodology (RSM). Preparation of natural deep eutectic solvent (NADES) as a green solvent was performed by melting the two-component of malic acid and glucose using a magnetic stirrer. The leaves sample was extracted using the NADES-MAE method with various extraction conditions with four factors and three levels (Box Behnken Design) and optimized using RSM with licensed software of Design Expert V12. TPC was determined using a Folin-Ciocalteau reagent and absorbance was measured on a UV-VIS spectrophotometer at 770 nm and gallic acid as a standard. This study was obtained the optimum extraction conditions include: NADES ratio (malic acid: glucose) of 1:2 g/g, 50% microwave power, a solvent-sampel ratio of 12:1 mL/g, and extraction time for 7 minutes. The optimum conditions were obtained according to the equation formula: TPC = 165.17 – 33.97X1 + 38.36X2 – 6.08X3 + 16.12X4 – 62.77X1X2 + 79.61X12X2, where a R2 value = 0.7102 with a TPC prediction of 402.087±43.81 mg GAE/g sample. These conditions can be used to extract TPC from this plant efficiently, quickly, easily, and environmentally friendly.

Keywords

Box Behnken Design Mitragyna speciosa Kort Havil Natural Deep Eutectic Solvent Response Surface Methodology Total Polyphenols Content

Article Details

How to Cite
Ahmad, I., Yusniah, A., Nur, Y., Prabowo, W. C., & Herman. (2020). Pengayaan Polifenol Total dari Daun Kadamba Menggunakan Metode Ekstraksi Berbantu Mikrowave Berbasis Pelarut Hijau: Total Polyphenols Enrichment from Mitragyna speciosa Korth Havil Leaves Using Green Solvent Based Microwave-assisted Extraction Method. Jurnal Farmasi Galenika (Galenika Journal of Pharmacy) (e-Journal), 6(2). https://doi.org/10.22487/j24428744.2020.v6.i2.15035

References

  1. Ahmad, I., Yanuar, A., Mulia, K., & Mun’im, A. (2017a). Application of ionic liquid based microwave-Assisted extraction of the secondary metabolite from Peperomia pellucida (L) Kunth. Pharmacognosy Journal, 9(2). https://doi.org/10.5530/pj.2017.2.38
  2. Ahmad, I, Pertiwi, A. S., Kembaren, Y. H., Rahman, A., & Mun’im, A. (2018). Application of natural deep eutectic solvent-based ultrasonic assisted extraction of total polyphenolic and caffeine content from coffe beans (Coffea Beans L.) for instant food products. Journal of Applied Pharmaceutical Science, 8(8), 138–143. https://doi.org/10.7324/JAPS.2018.8819
  3. Ahmad, I, Yanuar, A., Mulia, K., & Mun’im, A. (2017b). Optimization of ionic liquid-based microwave-assisted extraction of polyphenolic content from Peperomia pellucida (L) Kunth using response surface methodology. Asian Pacific Journal of Tropical Biomedicine, 7(7), 660–665. https://doi.org/10.1016/j.apjtb.2017.06.010
  4. Ahmad, I, Yanuar, A., Mulia, K., & Mun’im, A. (2018). Ionic liquid-based microwave-assisted extraction: Fast and green extraction method of secondary metabolites on medicinal plant. Pharmacognosy Reviews, 12(23), 20–26. https://doi.org/10.4103/phrev.phrev
  5. Ainsworth, E., & Gillespie, K. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nature Protocols, 2(4), 875–877. https://doi.org/10.1038/nprot.2007.102
  6. Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., et.al. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering, 117(4), 426–436. https://doi.org/10.1016/j.jfoodeng.2013.01.014
  7. Bobo-García, G., Davidov-Pardo, G., Arroqui, C., Vírseda, P., Marín-Arroyo, M., & Navarro, M. (2014). Intra-laboratory validation of microplate methods for total phenolic content and antioxidant activity on polyphenolic extracts, and comparison with conventional spectrophotometric methods. Journal of the Science of Food and Agriculture, 95(1), 204–209. https://doi.org/10.1002/jsfa.6706
  8. Brown, P. N., Lund, J. A., & Murch, S. J. (2017). A botanical, phytochemical and ethnomedicinal review of the genus Mitragyna Korth: Implications for products sold as kratom. Journal of Ethnopharmacology, 202, 302–325. https://doi.org/10.1016/j.jep.2017.03.020
  9. Chemat, F., & Vian, M. A. (2014). Green Chemistry and Sustainable Technology: Alternative Solvents for Natural Products Extraction. Heildelberg, New York, Dordrecht, London: Springer US.
  10. Chemat, F., Vian, M. A., & Cravotto, G. (2012). Green extraction of natural products: Concept and principles. International Journal of Molecular Sciences, 13(7), 8615–8627. https://doi.org/10.3390/ijms13078615
  11. Gómez, A. V., Tadini, C. C., Biswas, A., Buttrum, M., Kim, S., Boddu, V. M., et.al. (2019). Microwave-assisted extraction of soluble sugars from banana puree with natural deep eutectic solvents (NADES). LWT - Food Science and Technology, 107(October 2018), 79–88. https://doi.org/10.1016/j.lwt.2019.02.052
  12. González, C. G., Mustafa, N. R., Wilson, E. G., Verpoorte, R., & Choi, Y. H. (2018). Application of natural deep eutectic solvents for the “green”extraction of vanillin from vanilla pods. Flavour and Fragrance Journal, 33(1), 91–96. https://doi.org/10.1002/ffj.3425
  13. Ikhwan, D., Harlia, & Widiyantoro, A. (2018). Karakterisasi senyawa sitotoksik dari fraksi etil asetat daun Kratom (Mitragyna speciosa Korth.) dan aktivitasnya terhadap sel kanker payudara T47D. Jurnal Kimia Khatulistiwa, 7(2), 18–24.
  14. Mulia, K., Fauzia, F., & Krisanti, E. A. (2019). Polyalcohols as hydrogen-bonding donors in choline chloride-based deep eutectic solvents for extraction of xanthones from the pericarp of Garcinia mangostana L. Molecules, 24(3). https://doi.org/10.3390/molecules24030636
  15. Orio, L., Alexandru, L., Cravotto, G., Mantegna, S., & Barge, A. (2012). UAE, MAE, SFE-CO2 and classical methods for the extraction of Mitragyna speciosa leaves. Ultrasonics Sonochemistry, 19(3), 591–595. https://doi.org/10.1016/j.ultsonch.2011.10.001
  16. Raini, M. (2017). Kratom (Mitragyna speciosa Korth): Manfaat, efek samping dan legalitas. Media Penelitian dan Pengembangan Kesehatan, 27(3), 175–184. https://doi.org/10.22435/mpk.v27i3.6806.175-184
  17. Sanchez-Rangel, J., Benavides, J., Heredia, J., Cisneros-Zevallos, L., & Jacobo-Velazquez, D. (2013). The Folin-Ciocalteu assay revisited: improvement of its specificity for total phenolic content determination. Anal. Methods, 5(21), 5990–5999. https://doi.org/10.1039/b000000x
  18. Singh, D., Narayanan, S., & Vicknasingam, B. (2016). Traditional and non-traditional uses of Mitragynine (Kratom): A survey of the literature. Brain Research Bulletin, 126, 41–46. https://doi.org/10.1016/j.brainresbull.2016.05.004
  19. Torres-Vega, J., Gomez-Alonso, S., Perez-Navarro, J., & Pastene-navarrete, E. (2020). Green extraction of alkaloids and polyphenols from Peumus boldus leaves with natural deep eutectic. Plants, 9, 242–259.
  20. Wang, H., Ma, X., Cheng, Q., Xi, X., & Zhang, L. (2018). Deep eutectic solvent-based microwave-assisted extraction of baicalin from Scutellaria baicalensis Georgi. Journal of Chemistry, 2018. https://doi.org/10.1155/2018/9579872