Main Article Content


Heat shock proteins-90 (HSP-90) is a protein that plays an important role in the life cycle of normal and cancer cells for their self protection from thermal stress, oxidative damage, and cell hypoxia. Inhibition of HSP90 is one way to suppress the growth of cancer cells. In this study, pharmacophore modeling and molecular docking were conducted to identify hit compounds as inhibitors of HSP-90. The pharmacophore feature consists of three hydrogen bond acceptors, one hydrogen bond donor and one hydrophobic feature with Area Under Curve of Receiver Operating Characteristics (AUCROC) is 0.5 and the Goodness of Hit (GH) value is 0.752. Screening in the ZINC database generated 1,500 hit compounds, were subjected to molecular docking to determine their binding energy and interactions with HSP-90. The range of binding energy (E) of all hit compounds is -5.68 to -12.24 kcal/mol and there are four best hit compounds namely lig_543, lig_527, lig_1337 and lig_337, when compared to native ligands (PU2, E=-8.25 kkal/mol) based on the binding energy and orientation, which indicate their potential as new HSP-90 inhibitors.   



Pharmacophore Heat Shock Protein-90 Molecular Docking Virtual Screening

Article Details

Author Biographies

Muhammad Arba, Universitas Halu Oleo

Fakultas Farmasi, Universitas Halu Oleo, Kendari, Indonesia.

Arfan, Universitas Halu Oleo

Fakultas Farmasi, Universitas Halu Oleo, Kendari.

Ayu Trisnawati, Universitas Halu Oleo

Jurusan Kimia, Universitas Halu Oleo, Kendari.

Desi Kurniawati, Universitas Halu Oleo

Jurusan Kimia, Universitas Halu Oleo, Kendari.

How to Cite
Arba, M., Arfan, Trisnawati, A., & Kurniawati, D. (2020). Pemodelan Farmakofor untuk Identifikasi Inhibitor Heat Shock Proteins-90 (HSP-90): Pharmacophore Modeling to Identify Heat Shock Proteins-9 (HSP-90) Inhibitors. Jurnal Farmasi Galenika (Galenika Journal of Pharmacy) (e-Journal), 6(2).


  1. Arba, M. (2019). Buku Ajar Farmasi Komputasi. Yogyakarta: Deepublish.
  2. Arba, M., Azali, H., Ombe, S., Armid, A., & Usman, I. (2019). 3D-QSAR, Molecular Docking and Dynamics Simulation of Difluorophenol Pyridine Derivatives as RSK2 Inhibitor. J. Appl. Pharm. Sci., 9(6), 001-009.
  3. Arba, M., Nur-Hidayat, A., Surantaadmaja, S. I., & Tjahjono, D. H. (2018). Pharmacophore-based Virtual Screening for Identifying β5 Subunit Inhibitor of 20S Proteasome. Computational Biology and Chemistry, 77, 64-71.
  4. Arba, M., Ruslin, Kalsum, W. U., Alroem, A., Muzakkar, M. Z., Usman, I., & Tjahjono, D. H. (2018). QSAR, Molecular Docking and Dynamics Studies of Quinazoline Derivatives as Inhibitor of Phosphatidylinositol 3-Kinase. J. Appl. Pharm. Sci., 8(5), 001-009.
  5. Chen, B., Piel, W. H., Gui, L., Bruford, E., & Monteiro, A. (2005). The HSP90 Gen Family in Human Genom: Their Different Wawasan and Evolution. Genomics, 86(6).
  6. Dror, O., Schneudman-Duhovny, D., Inbar, Y., Nussinov, R., & Wolfson, H. J. (2009). Novel Approach for Efficient Pharmacophore-Based Virtual Screening: Method and Applications. J. Chem. Inf. Model, 49, 2333-2343.
  7. Egorin, M. J., Lagattuta, T. F., & Hamburger, D. R. (2002). Pharmacokinetics, Tissue Distribution and Metabolism of 17-(Dimethylaminoethylamino)-17-Demethoxygeldanamycin (NSC 707545) in CD2F1 Mice and Fischer 344 Rats. Cancer Chemother Pharmacol, 49, 7-19.
  8. Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad , E. S., & Coleman, R. G. (2012). ZINC: A Free Tool to Discovery Chemistry for Biology. J. Chem. Inf. Model, 52(7), 1757-1768.
  9. Juliati, F., Brahmana, A., & Dyah, F. (2015). Hubungan antara Ekspresi Hsp27 dan Hsp70 dengan Derajat Diferensiasi dan Angka Ketahanan Hidup Dua Tahun pada Penderita Kanker Endometrium Tipe I Pasca-Pembedahan di RSUD Dr. Soetomo. Indonesian Journal of Cancer, 9(2).
  10. Kaur, G., Belotti, D., Burger, A. M., Fisher-Nielson, K., Borsotti, P., Riccardi, F., . . . Giayazzi, R. (2004). Antiangiogenic Properties of 17-(Dimethylaminoethylamino)-17-Demethoxygeldanamycin: An Orally Bioavailable Heat Shock Protein 90 Modulator. Clin Cancer Res, 10, 4813-4821.
  11. Kim, H. Y., J.Park, K. H., Lee, D. U., Kwak, Y. S., & Kim, S. M. (2011). The Future of Thoracoscopic Lobectomy in Lung Cancer. Asian Cardiovasc Thorac Ann, 28(2).
  12. Kumalo, H. M., & Soliman, M. E. (2015). Per-Residue Energy Footprints-Based Pharmacophore Modeling as an Enhanced in Silico Approach in Drug Discovery: A Case Study on the Identification of Novel b-Secretase 1 (BACE1) Inhibitors as AntiAlzheimer Agents. Cell. Mol. Bioeng., 9(1), 175-189.
  13. Li, H., Leung, K., & Wong, M. (2012). Idock: A Multithreaded Virtual Screening Tool for Flexible Ligand Docking. 2012 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB).
  14. Morris , G. M., Huey, R., Lindstorm, W., Sanner , M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDock Tools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem., 30(16), 2785-2791.
  15. Mysinger, M. M., Charcia, M., Irwin, J. J., & Shoichet , B. K. (2012). Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking. J. Med. Chem, 55(14), 6582-6594.
  16. Wolber, G., & Langer, T. (2005). LigandScout: 3-D Pharmacophores Derived from Protein-Bound Ligands and Their Use as Virtual Screening Filters. J. Chem. Inf. Model, 45(1), 160-169.