Main Article Content


Stem cells are potentially used as a regenerative therapy agent. Cell encapsulation is one of the developed methods to utilize Mesenchymal Stem Cells (MSCs) for therapy. This research aimed to study the effect of encapsulation using alginate-CaCl2 towards the viability of hAdMSCs during in vitro culture. Encapsulation of hAdMSCs with alginate-CaCl2 was done using the extrusion method. The viability of hAdMSCs was analyzed with Live/Dead Assay and MTT assay. The results indicated that cultured hAdMSCs within alginate remain alive for 7 days culture period. However, the viability was lower than the reference culture. The absorbances from MTT assay of encapsulated MSCs were lower than the conventional hAdMSCs culture. This result indicated lower metabolic activity of hAdMSCs when cultured in alginate beads.


mesenchymal stem cells encapsulation alginate viability

Article Details

Author Biographies

Marsudi Siburian, Institut Teknologi Sumatera

Biomedical Engineering Study Program

Sismindari, Universitas Gadjah Mada

Professor in Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Universitas Gadjah Mada

Rilianawati, Badan Pengkajian dan Penerapan Teknologi (Agency for the Assessment and Application of Technology)

Center for Pharmaceutical and Medical Technology

How to Cite
Siburian, M., Sismindari, & Rilianawati. (2021). The Encapsulation Effect on Viability of Mesenchymal Stem Cells: Pengaruh Enkapsulasi Terhadap Viabilitas Sel Punca Mesenkimal. Jurnal Farmasi Galenika (Galenika Journal of Pharmacy) (e-Journal), 7(1), 1-9.


  1. Browne, S. M., & Al-Rubeai, M. (2011). Defining viability in mammalian cell cultures. Biotechnology Letters, 33(9), 1745–1749.
  2. Cao, N., Chen, X. B., & Schreyer, D. J. (2012). Influence of Calcium Ions on Cell Survival and Proliferation in the Context of an Alginate Hydrogel. ISRN Chemical Engineering, 2012, 1–9.
  3. da Silva Meirelles, L., Fontes, A. M., Covas, D. T., & Caplan, A. I. (2009). Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine and Growth Factor Reviews, 20(5–6), 419–427.
  4. Duscher, D., Barrera, J., Wong, V. W., Maan, Z. N., Whittam, A. J., Januszyk, M., & Gurtner, G. C. (2016). Stem Cells in Wound Healing: The Future of Regenerative Medicine? A Mini-Review. Gerontology, 62(2), 216–225.
  5. Hassan, W. U., Greiser, U., & Wang, W. (2014). Role of adipose-derived stem cells in wound healing. Wound Repair and Regeneration, 22(3), 313–325.
  6. Ho, W. C., & Zhang, J. (2018). Evolutionary adaptations to new environments generally reverse plastic phenotypic changes. Nature Communications, 9(1), 1–11.
  7. Humeau, J., Bravo-San Pedro, J. M., Vitale, I., Nuñez, L., Villalobos, C., Kroemer, G., & Senovilla, L. (2018). Calcium signaling and cell cycle: Progression or death. Cell Calcium, 70, 3–15.
  8. J. Boohaker, R., W. Lee, M., Vishnubhotla, P., M. Perez, J. L., & R. Khaled, A. (2012). The Use of Therapeutic Peptides to Target and to Kill Cancer Cells. Current Medicinal Chemistry, 19(22), 3794–3804.
  9. Khalili, A. A., & Ahmad, M. R. (2015). A Review of cell adhesion studies for biomedical and biological applications. International Journal of Molecular Sciences, 16(8), 18149–18184.
  10. Khan, Y. (2018). Characterizing the properties of tissue constructs for regenerative engineering. Encyclopedia of Biomedical Engineering (Vol. 1–3). Elsevier.
  11. Lan, S. F., Safiejko-Mroczka, B., & Starly, B. (2010). Long-term cultivation of HepG2 liver cells encapsulated in alginate hydrogels: A study of cell viability, morphology and drug metabolism. Toxicology in Vitro, 24(4), 1314–1323.
  12. Lanza, R., & Atala, A. (2014). Essentials of Stem Cell Biology. Essentials of Stem Cell Biology, 307–327.
  13. Lee, C., Nicolini, A., Watkins, E., Burnsed, O., Boyan, B., & Schwartz, Z. (2014). Adipose Stem Cell Microbeads as Production Sources for Chondrogenic Growth Factors. Journal of Stem Cells and Regenerative Medicine, 10(2), 38–48.
  14. Lee, K. Y., & Mooney, D. J. (2001). Hydrogels for tissue engineering. Chemical Reviews, 101(7), 1869–1879.
  15. Lee, K. Y., & Mooney, D. J. (2012). Alginate: Properties and biomedical applications. Progress in Polymer Science (Oxford), 37(1), 106–126.
  16. Madrigal, M., Rao, K. S., & Riordan, N. H. (2014). A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. Journal of Translational Medicine, 12(1), 1–14.
  17. Maioli, E., Torricelli, C., Fortino, V., Carlucci, F., Tommassini, V., & Pacini, A. (2009). Critical appraisal of the MTT assay in the presence of Rottlerin and uncouplers. Biological Procedures Online, 11(1), 227–240.
  18. Markusen, J. F., Mason, C., Hull, D. A., Town, M. A., Tabor, A. B., Clements, M., … Dunnill, P. (2006). Behavior of adult human mesenchymal stem cells entrapped in alginate-GRGDY beads. Tissue Engineering, 12(4), 821–830.
  19. Mohanty, S., Wu, Y., Chakraborty, N., Mohanty, P., & Ghosh, G. (2016). Impact of alginate concentration on the viability, cryostorage, and angiogenic activity of encapsulated fibroblasts. Materials Science and Engineering C, 65, 269–277.
  20. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1–2), 55–63.
  21. Orive, G., Santos, E., Poncelet, D., Hernández, R. M., Pedraz, J. L., Wahlberg, L. U., … Emerich, D. (2015). Cell encapsulation: technical and clinical advances. Trends in Pharmacological Sciences, 36(8), 537–546.
  22. Pokrywczynska, M., Drewa, T., Jundzill, A., & Lysik, J. (2008). Alginate Is Not a Good Material for Growth of Rapidly Proliferating Cells. Transplantation Proceedings, 40(5), 1664–1667.
  23. Poulsen, C. R., Culbertson, C. T., Jacobson, S. C., & Ramsey, J. M. (2005). Static and dynamic acute cytotoxicity assays on microfluidic devices. Analytical Chemistry, 77(2), 667–672.
  24. Rai, Y., Pathak, R., Kumari, N., Sah, D. K., Pandey, S., Kalra, N., … Bhatt, A. N. (2018). Mitochondrial biogenesis and metabolic hyperactivation limits the application of MTT assay in the estimation of radiation induced growth inhibition. Scientific Reports, 8(1), 1–15.
  25. Riss, T. L., Moravec, R. A., Niles, A. L., Duellman, S., Benink, H. A., Worzella, T. J., & Minor, L. (2004). Cell Viability Assays. Assay Guidance Manual, (Md), 1–25. Retrieved from
  26. Ryu, Y. J., Cho, T. J., Lee, D. S., Choi, J. Y., & Cho, J. (2013). Phenotypic characterization and in vivo localization of human adipose-derived mesenchymal stem cells. Molecules and Cells, 35(6), 557–564.
  27. Saji Joseph, J., Tebogo Malindisa, S., & Ntwasa, M. (2019). Two-Dimensional (2D) and Three-Dimensional (3D) Cell Culturing in Drug Discovery. Cell Culture.
  28. Shinde, U., & Nagarsenker, M. (2009). Characterization of gelatin-sodium alginate complex coacervation system. Indian Journal of Pharmaceutical Sciences, (June), 313–317. Retrieved from;year=2009;volume=71;issue=3;spage=313;epage=317;aulast=Shinde%25%5C 2019-10-28 18:24:00
  29. Simpson, N. E., Stabler, C. L., Simpson, C. P., Sambanis, A., & Constantinidis, I. (2004). The role of the CaCl2-guluronic acid interaction on alginate encapsulated βTC3 cells. Biomaterials, 25(13), 2603–2610.
  30. Vaithilingam, V., Quayum, N., Joglekar, M. V., Jensen, J., Hardikar, A. A., Oberholzer, J., … Tuch, B. E. (2011). Effect of alginate encapsulation on the cellular transcriptome of human islets. Biomaterials, 32(33), 8416–8425.
  31. Yao, R., Zhang, R., Luan, J., & Lin, F. (2012). Alginate and alginate/gelatin microspheres for human adipose-derived stem cell encapsulation and differentiation. Biofabrication, 4(2).