Main Article Content

Abstract

Background: The incidence and mortality of cancer are rapidly growing worldwide. Modification on drug delivery systems based on nanotechnology was applied to improve the effectiveness and safety of treatment. Nanoencapsulation, a part of nanotechnology,  was known can be involved in cytotoxic agents. Objective: This research was conducted to determine the type of polymers for nanoencapsulation of cytotoxic agents and analyze the effect of nanoencapsulation on the cytotoxic activity. Methods: The study was performed by systematic literature review using selected articles from reputable databases that meet the inclusion and exclusion criteria. Results: The results show that many cytotoxic agents have been developed in nanocapsules systems due to their low water solubility, chemical instability, and low bioavailability. The nanoencapsulation process was carried out using synthetic or natural polymers such as polylactic-co-glycolic acid (PLGA), PEGylated PLGA, polycaprolactone (PCL), chitosan-sodium tripolyphosphate, chitosan-sodium alginate, heparin-poly(l-lysine), and polymethyl methacrylate (PMMA). Those polymers are widely used for nanoencapsulation related to their biocompatible, biodegradable, non-toxic, and providing the desired coating properties. The nanoencapsulation on cytotoxic agents significantly increases the in vitro cytotoxicity, marked by the decrease of IC50 value in the range 1.4-15.4 folds compared to pure drugs. The increase in cytotoxicity could be caused by particle size reduction, modification of particle surface properties, and enhancement of drug stability. Conclusion: It can be concluded that nanoencapsulation can be applied for cytotoxic agents to increase their activity using the appropriate coating polymer.

Keywords

Nanocapsules Nanoencapsulation Cytotoxic agent Systematic review

Article Details

Author Biographies

Sani Ega Priani, Universitas Islam Bandung, Bandung, Indonesia

Department of Pharmacy, Universitas Islam Bandung, Bandung, Indonesia

Tia Nur Setianty, Universitas Islam Bandung (UNISBA), Bandung, Indonesia

Department of Pharmacy, Universitas Islam Bandung (UNISBA), Bandung, Indonesia

Ratih Aryani, Universitas Islam Bandung, Bandung, Indonesia

Department of Pharmacy, Universitas Islam Bandung (UNISBA), Bandung, Indonesia

Sri Peni Fitrianingsih, Universitas Islam Bandung, Bandung, Indonesia

Department of Pharmacy, Universitas Islam Bandung (UNISBA), Bandung, Indonesia

Livia Syafnir, Universitas Islam Bandung, Bandung, Indonesia

Department of Pharmacy, Universitas Islam Bandung (UNISBA), Bandung, Indonesia

How to Cite
Priani, S. E., Setianty, T. N., Aryani, R., Fitrianingsih, S. P., & Syafnir, L. (2021). Development of Nanocapsules Containing Cytotoxic Agents- A Review: Kajian Literatur Pengembangan Sediaan Nanokapsul Mengandung Agen Sitotoksik. Jurnal Farmasi Galenika (Galenika Journal of Pharmacy) (e-Journal), 7(2), 151-165. https://doi.org/10.22487/j24428744.2021.v7.i2.15578

References

  1. A, R., WF, W., O, G., M, M., & B, G. (2015). Pcl/Peg Electrospun Fibers as Drug Carriers for the Controlled Delivery of Dipyridamole. Journal of In Silico & In Vitro Pharmacology, 01(01). https://doi.org/10.21767/2469-6692.10003
  2. Anbu A, S., SV, S., & P, V. (2016). Synthesis of Bioactive Chemicals Cross-linked Sodium Tripolyphosphate (TPP) - Chitosan Nanoparticles for Enhanced Cytotoxic Activity against Human Ovarian Cancer cell Line (PA-1). Journal of Nanomedicine & Nanotechnology, 07(06). https://doi.org/10.4172/2157-7439.1000418
  3. Anversa Dimer, F., de Souza Carvalho-Wodarz, C., Goes, A., Cirnski, K., Herrmann, J., Schmitt, V., Pätzold, L., Abed, N., De Rossi, C., Bischoff, M., Couvreur, P., Müller, R., & Lehr, C. M. (2020). PLGA nanocapsules improve the delivery of clarithromycin to kill intracellular Staphylococcus aureus and Mycobacterium abscessus. Nanomedicine: Nanotechnology, Biology, and Medicine, 24. https://doi.org/10.1016/j.nano.2019.102125
  4. Bangun, H., Tandiono, S., & Arianto, A. (2018). Preparation and evaluation of chitosan-tripolyphosphate nanoparticles suspension as an antibacterial agent. Journal of Applied Pharmaceutical Science, 8(12). https://doi.org/10.7324/JAPS.2018.81217
  5. Bruinsmann, F. A., Buss, J. H., Souto, G. D., Schultze, E., de Cristo Soares Alves, A., Seixas, F. K., Collares, T. V., Pohlmann, A. R., & Guterres, S. S. (2020). Erlotinib-Loaded Poly(ε-Caprolactone) Nanocapsules Improve In Vitro Cytotoxicity and Anticlonogenic Effects on Human A549 Lung Cancer Cells. AAPS PharmSciTech, 21(6). https://doi.org/10.1208/s12249-020-01723-y
  6. Buss, J. H., Begnini, K. R., Bruinsmann, F. A., Ceolin, T., Sonego, M. S., Pohlmann, A. R., Guterres, S. S., Collares, T., & Seixas, F. K. (2019). Lapatinib-loaded nanocapsules enhances antitumoral effect in human bladder cancer cell. Frontiers in Oncology, 9(APR). https://doi.org/10.3389/fonc.2019.00203
  7. Carpio Arévalo, J. M., Feuser, P. E., Rossi, G. R., Trindade, E. S., da Silva Córneo, E., Machado-de-Ávila, R. A., Sayer, C., Cadena, S. M. S. C., Noleto, G. R., Martinez, G. R., Hermes de Araújo, P. H., & Merlin Rocha, M. E. (2019). Preparation and characterization of 4-nitrochalcone-folic acid-poly(methyl methacrylate) nanocapsules and cytotoxic activity on HeLa and NIH3T3 cells. Journal of Drug Delivery Science and Technology, 54. https://doi.org/10.1016/j.jddst.2019.101300
  8. Dineshkumar, B., Krishnakumar, K., John, A., Paul, D., Cherian, J., & Panayappan, L. (2013). Nanocapsules : A Novel Nano-Drug Delivery System. International Journal of Research in Drug Delivery, 3(1).
  9. Elhesaisy, N., & Swidan, S. (2020). Trazodone Loaded Lipid Core Poly (ε-caprolactone) Nanocapsules: Development, Characterization and in Vivo Antidepressant Effect Evaluation. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-58803-z
  10. Korang-Yeboah, M., Gorantla, Y., Paulos, S. A., Sharma, P., Chaudhary, J., & Palaniappan, R. (2015). Polycaprolactone/maltodextrin nanocarrier for intracellular drug delivery: Formulation, uptake mechanism, internalization kinetics, and subcellular localization. International Journal of Nanomedicine, 10. https://doi.org/10.2147/IJN.S75101
  11. Na, K., Kim, S., Park, K., Kim, K., Dae, G. W., Ick, C. K., Chung, H. M., & Park, K. H. (2007). Heparin/poly(l-lysine) nanoparticle-coated polymeric microspheres for stem-cell therapy. Journal of the American Chemical Society, 129(18). https://doi.org/10.1021/ja067707r
  12. Nagarwal, R. C., Kumar, R., & Pandit, J. K. (2012). Chitosan coated sodium alginate-chitosan nanoparticles loaded with 5-FU for ocular delivery: In vitro characterization and in vivo study in rabbit eye. European Journal of Pharmaceutical Sciences, 47(4). https://doi.org/10.1016/j.ejps.2012.08.008
  13. Parekh, G., Pattekari, P., Joshi, C., Shutava, T., DeCoster, M., Levchenko, T., Torchilin, V., & Lvov, Y. (2014). Layer-by-layer nanoencapsulation of camptothecin with improved activity. International Journal of Pharmaceutics, 465(1–2). https://doi.org/10.1016/j.ijpharm.2014.01.041
  14. Rezvantalab, S., Drude, N. I., Moraveji, M. K., Güvener, N., Koons, E. K., Shi, Y., Lammers, T., & Kiessling, F. (2018). PLGA-based nanoparticles in cancer treatment. Frontiers in Pharmacology, 9(NOV). https://doi.org/10.3389/fphar.2018.01260
  15. Riezk, A., van Bocxlaer, K., Yardley, V., Murdan, S., & Croft, S. L. (2020). Activity of Amphotericin B-Loaded Chitosan Nanoparticles against Experimental Cutaneous Leishmaniasis. Molecules, 25(17). https://doi.org/10.3390/molecules25174002
  16. Rodriguez-Torres, M. D. P., Acosta-Torres, L. S., & Diaz-Torres, L. A. (2018). Heparin-Based Nanoparticles: An Overview of Their Applications. In Journal of Nanomaterials (Vol. 2018). https://doi.org/10.1155/2018/9780489
  17. Silva-Filho, C. J. A., Freitas, P. G. C., Oliveira, F. C. E., Barbosa, F. G., Oliveira, M. C. F., Eloy, J. O., Pessoa, C., & Mafezoli, J. (2020). Nanoencapsulation of triterpene 3β,6β,16β-trihydroxylup-20(29)-ene from Combretum leprosum as strategy to improve its cytotoxicity against cancer cell lines. Bioorganic and Medicinal Chemistry Letters, 30(20). https://doi.org/10.1016/j.bmcl.2020.127469
  18. Singh, S. K., Banala, V. T., Gupta, G. K., Verma, A., Shukla, R., Pawar, V. K., Tripathi, P., & Mishra, P. R. (2015). Development of docetaxel nanocapsules for improving in vitro cytotoxicity and cellular uptake in MCF-7 cells. Drug Development and Industrial Pharmacy, 41(11). https://doi.org/10.3109/03639045.2014.1003220
  19. Stecanella, L. A., Taveira, S. F., Marreto, R. N., Valadares, M. C., Vieira, M. de S., Kato, M. J., & Lima, E. M. (2013). Development and characterization of PLGA nanocapsules of grandisin isolated from Virola surinamensis: In vitro release and cytotoxicity studies. Revista Brasileira de Farmacognosia, 23(1). https://doi.org/10.1590/S0102-695X2012005000128
  20. Suganya, V., & Anuradha, V. (2017). Microencapsulation and Nanoencapsulation: A Review. International Journal of Pharmaceutical and Clinical Research, 9(3). https://doi.org/10.25258/ijpcr.v9i3.8324
  21. Teixeira, M., Alonso, M. J., Pinto, M. M. M., & Barbosa, C. M. (2005). Development and characterization of PLGA nanospheres and nanocapsules containing xanthone and 3-methoxyxanthone. European Journal of Pharmaceutics and Biopharmaceutics, 59(3). https://doi.org/10.1016/j.ejpb.2004.09.002
  22. Yasin, U., Bilal, M., Bashir, H., Amirzada, M. I., Sumrin, A., & Bin Asad, M. H. H. (2020). Preparation and nanoencapsulation of lectin from lepidium sativum on chitosan-tripolyphosphate nanoparticle and their cytotoxicity against hepatocellular carcinoma cells (HepG2). BioMed Research International, 2020. https://doi.org/10.1155/2020/7251346
  23. Yu, F., Chen, Z. H., Zeng, X. R., Gao, X. N., & Zhang, Z. G. (2015). Poly(methyl methacrylate) copolymer nanocapsules containing phase-change material (n-dodecanol) prepared via miniemulsion polymerization. Journal of Applied Polymer Science, 132(31). https://doi.org/10.1002/app.42334