Main Article Content

Abstract

Background: Chitosan is a compound that can be synthesized from nature which can reduce the total serum cholesterol levels between 5.8−42.6% and decrease LDL (Low-Density Lipoprotein) between 15.1-35.1%. One of the natural resources containing chitosan derivative compounds is the shell of mud crab. Chitosan is insoluble in water but soluble in acidic solutions such as acetic acid. With such chitosan solubility, it is necessary to increase the solubility by making a solid dispersion system so that drug absorption can be faster. Objectives: The aims of this study is to determine the potential of chitosan solid dispersion system for reducing cholesterol. Material and Methods: The reduction of cholesterol levels was carried out by in vitro tests using UV-Vis spectrophotometer at a wavelength of 405 nm with Lieberman-Burchad reagent. The positive control used was simvastatin. There are 4 formulas, namely SD1, PM1, SD2, and PM2. This solid dispersion system uses polyvinyl pyrrolidone K-30 (PVP K-30) as carrier. Results: The characterization of chitosan has fulfilled all the characterization requirements that is organoleptic (shape and color) was creamy white, moisture content was 2.15%, ash content was 1.14%, ninhydrin test was positive purple, and deacetylation degree was 70.57%. The results of in vitro evaluation were obtained a dark green solution. The reducing percentage in cholesterol levels are SD1: 18.44%; PM1 : 18.11%; SD2 : 29.57%; and PM2 :12.01%. Simvastatin as a positive control has a percentage reduction in cholesterol levels of 30.07%.  Conclusion: Chitosan has an activity as anticholesterol agent. SD2 (Solid Dispersion Chitosan: PVP K-30 = 1:2) has the higher percentage than other formulas for reducing cholesterol level comparable with the positive control.

Keywords

Mangrove crab shell Chitosan Decreasing cholesterol Solid dispersion In vitro assay

Article Details

Author Biographies

Hilya Nur Imtihani, Akademi Farmasi Surabaya, Surabaya

Program Studi DIII Farmasi, Akademi Farmasi Surabaya, Surabaya, Indonesia.

Silfiana Nisa Permatasari, Akademi Farmasi Surabaya, Surabaya

Program Studi DIII Farmasi, Akademi Farmasi Surabaya, Surabaya, Indonesia.

Rahmad Aji Prasetya, Akademi Farmasi Surabaya, Surabaya

Program Studi DIII Farmasi, Akademi Farmasi Surabaya, Surabaya, Indonesia.

How to Cite
Imtihani, H. N., Permatasari, S. N., & Prasetya, R. A. (2021). In Vitro Evaluation of Cholesterol-Reducing Ability of Chitosan from Mangrove Crab (Scylla serrata) Shell Solid Dispersion using PVP K-30 as a Carrier: Uji In Vitro Penurunan Kadar Kolesterol Sistem Dispersi Padat Kitosan dari Cangkang Kepiting Bakau (Scylla serrata) Menggunakan PVP K-30 Sebagai Pembawa. Jurnal Farmasi Galenika (Galenika Journal of Pharmacy) (e-Journal), 7(2), 99-109. https://doi.org/10.22487/j24428744.2021.v7.i2.15597

References

  1. Adu, J. K., Amengor, C. D. K., Kabiri, N., Orman, E., Abla, S., Patamia, G., & Okrah, B. K. (2019). Validation of a Simple and Robust Liebermann – Burchard Colorimetric Method for the Assay of Cholesterol in Selected Milk Products in Ghana. 1–7. https://doi.org/https://doi.org/10.1155/2019/9045938
  2. Anas, Ajwar, D. (2017). Pembuatan Filter Penangkap Emas ( Au ) Menggunakan Kitin dan Kitosan dari Cangkang Kepiting. IKIP Mataram, 5(2), 23–30.
  3. Burke, R. W., Diamondstone, B. I., Velapoldi, R. A., & Menis, O. (1974). Mechanisms of the Liebermann Burchard and Zak color reactions for cholesterol. Clinical Chemistry, 20(7), 794–801. https://doi.org/10.1093/clinchem/20.7.794
  4. Chiou, W. L., & Riegelman, S. (1971). Pharmaceutical applications of solid dispersion systems. Journal of Pharmaceutical Sciences, 60(9), 1281–1302. https://doi.org/10.1002/jps.2600600902
  5. Imtihani, H. N., Permatasari, S. N., & Thalib, F. A. (2021). Solid Dispersion Characteristics of Whiteleg Shrimp ( Litopenaeus vannamei ) Extracted Chitosan with HPMC and PVP K-30 as Anti-cholesterol Agents. 14(July), 3560–3566. https://doi.org/10.52711/0974-360X.2021.00616
  6. Kenny, A. P. (1952). The determination of cholesterol by the Liebermann-Burchard reaction. The Biochemical Journal, 52(4), 611–619. https://doi.org/10.1042/bj0520611
  7. Maidin, A. N., Natsir, H., & Dali, S. (2017). Enzimatic production of chitosan from waste of rajungan crab shell and it’s aplication in cholesterol reduction by in vitro test. Indonesia Chimica Acta, 10(1), 25–34.
  8. Maidin Nasir Alfian. (2017). Produksi Kitosan Dari Limbah Cangkang Kepiting Rajungan (Portunidae) Secara Enzimatis Dan Aplikasinya Sebagai Penurun Kolesterol. In Universitas Hasanuddin Makassar (Vol. 01).
  9. Miller, J. N. (James N. ., Miller, J. C. (Jane C., & Miller, J. C. (Jane C. (2000). Statistics and chemometrics for analytical chemistry. 271.
  10. Pagala, M. A. (2011). Pengaruh Pemberian Kitosan Terhadap Kualitas Sel Darah Itik Petelur. 21, 116–120.
  11. Puspitasari, M. (2014). Efek Iradiasi Gamma Terhadap Aktivitas Anti Inflamasi Kitosan Secara in Vitro (Issue September). UIN Syarif Hidayatullah Jakarta.
  12. Rasio, P., Kitin, M., Dan, N., Kitosan, K., Disintesis, Y., Limbah, D., Udang, I., & Kerja, C. (2017). Pengaruh Rasio Massa Kitin/NaOH dan Waktu Reaksi Terhadap Karakteristik Kitosan Yang Disintesis Dari Limbah Industri Udang Kering. Universitas Riau, 1, 61–67.
  13. Taufan, S., Radhitya, M., & Zulfahmi. (2010). Pemanfaatan Limbah Kulit Udang sebagai Bahan Anti Rayap (Bio-termitisida) pada Bangunan Berbahan Kayu. Universitas Diponegoro.
  14. Trianggani, D. F., & Sulistiyaningsih. (2018). Dispersi padat. Farmaka, 16(1), 93–102.
  15. Umar, S., Sari, N. V., & Azhar, R. (2014). Studi Kestabilan Fisika Dan Kimia Dispersi Padat Ketoprofen–Polivinil Pirolidon K-30. Jurnal Farmasi Higea, 6(1), 3.
  16. Ylitalo, R., Lehtinen, S., Wuolijoki, E., Ylitalo, P., & Lehtimäki, T. (2002). Cholesterol-lowering properties and safety of chitosan. Arzneimittel-Forschung/Drug Research, 52(1), 1–7. https://doi.org/10.1055/s-0031-1299848