Main Article Content


Background: Atherosclerosis is a major finding in cardiovascular disease. One of the pro-fibrotic cytokines that play an important role in the atherosclerosis process is Tumor Growth Factor (TGF)-β1, where the presence of high TGF-β1 secretion due to hypercholesterolemia will trigger excessive collagen matrix formation. Objective: To analyze Rhizophora sp fruit extract effect on TGF-β1 expression in high cholesterol diet-fed rats. Material and Methods: Eighteen 10-week-old rats weighing 150-200 g were used in this study. These animals were grouped into 3 groups, each consisting of 6 rats. Group A (normal control) is a group of rats that received a normal diet. Group B (atherogenic control) received a diet that induces atherosclerosis (atherogenic diet). This diet contains 2% cholesterol, 5% goat fat, 0.2% cholic acid and standard diet up to 100%. Atherogenic diet was given for 3 days, and on the first day this group also received vitamin D3 700,000 IU/kg. Group C (treated), apart from receiving an atherogenic diet, was also given Rhizophora sp fruit extract 500 mg/kg body weight. The Rhizophora sp fruit extract effect on TGF-β1 expression was evaluated by immunohistochemical procedure. The area of ​​the expression is calculated using the ImageJ. Results: The results of this study indicate that the expression of TGF-β1 is higher in the group receiving the atherogenic diet than the normal control group (17.3 vs. 8.9; P=0.000). Rhizophora sp fruit extract reduced this expression remarkably (17.3 vs. 11.4; P=0.001). Conclusion: Rhizophora sp fruit extract inhibits the the expression of TGF-β1 in high cholesterol diet-fed rats.


Mangrove Rhizophora sp. TGF-β1 Atherosclerosis

Article Details

Author Biographies

Muhammad Yulis Hamidy, Universitas Riau

Department of Pharmacology, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia

Huriatul Masdar, Universitas Riau

Department of Histology, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia

Winarto Winarto, Universitas Riau

Department of Histology, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
How to Cite
Hamidy, M. Y., Masdar, H., & Winarto, W. (2021). Mangrove (Rhizophora sp.) Fruit Extract Inhibits Tumor Growth Factor (TGF)-β1 Expression in High Cholesterol Diet-Fed Rats: Ekstrak Buah Bakau (Rhizophora sp.) Menghambat Ekspresi Tumor Growth Factor(TGF)-β1 pada Tikus yang Mendapat Diet Tinggi Kolesterol. Jurnal Farmasi Galenika (Galenika Journal of Pharmacy) (e-Journal), 7(3), 213-220.


  1. Abeysinghe, P. D. (2010). Antibacterial activity of some medicinal mangrove against antibiotic resistant pathogenic bacteria. India J Pharm Sci, 72(2), 167-72.
  2. Aronson, D. (2003). Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. J Hypertens, 21(1), 3–12.
  3. Bakar, A., Purnama, P., Rahmayuni, R. (2013). Pengelolaan hutan mangrove dan pemanfaatannya dalam meningkatkan ekonomi masyarakat pesisir pantai Provinsi Riau. Kutubkhanah, 16(2), 94-103.
  4. Das, S. K., Samantaray, D., Patra, J. K., Samanta, L., Thatoi, H. (2016). Antidiabetic potential of mangrove plants: a review. Frontiers in Life Sci, 9(1), 75-88.
  5. Gurudeeban, S., Satyavani, K., Ramanathan, T., Balasubramanian, T. (2012). Antidiabetic effect of a black mangrove species Aegiceras corniculatum in alloxan-induced diabetic rats. J Adv Pharm Technol Res, 3(1), 52-6.
  6. Hamidy, M. Y., Masdar, H., Darmawi, D. (2020). Effect of Mangrove (Rhizophora sp) Fruit Extract on Foam Cell Formation at the Initiation Stage of Atherosclerosis. Biomed Pharmacol J, 13(1).
  7. Hansson, G. K. (2005). Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med, 352, 1685-95.
  8. Harsha, S., Ankita, J., Harsha, L., Deepak, B.(2018). Anti-oxidative, anti-inflammatory and anti-atherosclerotic effect of taurine on hypercholesterolemia induce atherosclerotic rats. Int J Pharm Pharm Sci, 10(3), 145-150.
  9. Herrmann, J., Lerman, L. O., Lerman, A. (2010). On to the road to degradation: atherosclerosis and the proteasome. Cardiovasc Res, 85, 291-302.
  10. Horkko, S., Binder, C. J., Shaw, P. X., Chang, M. K., Silverman, G., Palinski, W., Witztum, J. L. (2000). Immunological responses to oxidized LDL. Free Radic Biol Med, 28, 1771–9.
  11. Ismawati, Oenzil, F., Yanwirasti, Yerizel, E. (2016). Changes in expression of proteasome in rats at different stages of atherosclerosis. Anat Cell Biol, 49, 99-106.
  12. Krishnamoorthy, M., Sasikumar, J. M., Shamna, R., Pandiarajan, C., Sofia, P., Nagarajan, B. (2011). Antioxidant activities of bark extract from mangroves, Bruguiera cylindrica (L.) Blume and Ceriops decandra Perr. Indian J Pharmacol, 43(5), 557-62.
  13. Li, W. Q., Qureshi, H. Y., Liacini, A., Dehnade, F., Zafarullah, M. (2004). Transforming growth factor beta induction of tissue inhibitor of metaloproteinase 3 in articular chondrocytes is mediated by reactive oxygen species. Free Radic Biol Med, 37, 196-207.
  14. Prabhu, V. V., Guruvayoorappan, C. (2012). Anti-inflammatory and anti tumor activity of the marine mangrove Rhizophora apiculata. J Immunotoxicol, 9(4), 341-52.
  15. Ross, R. (1999). Atherosclerosis: an inflammatory disease. N Engl J Med, 340,:115–126.
  16. Sahoo, G., Mulla, N. S. S., Ansari, Z. A., Mohandes, C. (2012). Antibacterial activity of mangrove leaf extracts against human pathogens. Indian J Pharm Sci, 74(4), 348-51.
  17. World Health Organization. (2009). Cardiovascular diseases fact sheet. Geneva: World Health Organization.