Main Article Content
Abstract
Orally active drugs are currently available on the market. API should have adequate solubility and permeability to enhance its therapeutic efficacy when administered orally and obtain optimum bioavailability. Almost 40% of New Chemical Entities had limited solubility or fell into BCS class II and IV. Our review aims to summarize and discuss the development of methods and characterization for increasing the solubility of poorly aqueous drugs from papers published in Google Scholar, NCBI, Science direct, Researchgate, and MDPI. We checked that the methods used such as solid dispersion, cocrystal formation, and coamorphous can increase the solubility of API which has an impact on increasing bioavailability. The successful formation of solid dispersions, cocrystals and coamorphs can be confirmed by the characterization of PXRD, DSC and SEM. In conclusion, drug solubility is an important aspect of pharmacological effects. Drugs with high solubility can provide fast solubility rates and high bioavailability, reducing the dose administered. Solid dispersion, cocrystals, and coamorphous techniques, have succeeded in increasing the solubility of BCS class II and IV drugs.
Keywords
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
- Afifi, S. (2015). Solid Dispersion Approach Improving Dissolution Rate of Stiripentol: a Novel Antiepileptic Drug. Iranian Journal of Pharmaceutical Research : IJPR. 14(4). pp. 1001–1014.
- Alleso, M., Chieng, N., Rehder, S., Rantanen, J., Rades, T., Aaltonen, J. (2009). Enhanced Dissolution Rate and Synchronized Release of Drugs in Binary Systems Through Formulation: Amorphous Naproxen-Cimetidine Mixtures Prepared by Mechanical Activation. J Control Release. 136. pp. 45–53.
- Amit, V. A., Kishor, S. S., Machindra, J. C., Ravindra, B. C., Rudra, P. S. (2020). Solubility Enhancement of Bcs Classified II/IV Drug – Solid Dispersion of Apixaban by Solvent Evaporation. Int J Pharm. 10(4). pp. 430–6.
- Arafa, M. F., El-Gizawy, S. A., Osman, M. A., Maghraby, G. M. (2016). Sucralose as Co-Crystal Co-Former for Hydrochlorothiazide: Development of Oral Disintegrating Tablets. Drug Dev Ind Pharm. 42(8). pp. 25–33.
- Bhardwaj, A., Dwivedi, H., Kymonil, K. M., Pareek, A., Upadhyay, S. C., Tripathi, C. B., & Saraf, S. A. (2016). Solubility enhancement of Boswellia serrata Roxb. ex Colebr. Extract through a self dispersible lipidic formulation approach. Indian Journal of Natural Products and Resources (IJNPR)[Formerly Natural Product Radiance (NPR)]. 7(1). pp. 9–18.
- Chieng, N., Aaltonen, J., Saville, D., Rades, T. (2009). Physical Characterization and Stability of Amorphous Indomethacin and Ranitidine Hydrochloride Binary Systems Prepared by Mechanical Activation. Eur J Pharm Biopharm. 71(1). pp. 47–54.
- Dengale, S. J., Ranjan, O. P., Hussen, S. S., Krishna, B. S. M., Musmade, P. B., Shenoy, G. G., & Bhat, K. (2014). Preparation And Characterization of Co-Amorphous Ritonavir–Indomethacin Systems By Solvent Evaporation Technique: Improved Dissolution Behavior And Physical Stability Without Evidence Of Intermolecular Interactions. Eur. J. Pharm Sci. 62. pp. 57–64. https://doi.org/10.1016/j.ejps.2014.05.015
- Dhirendra, K., Lewis, S., Udupa, N., & Atin, K. (2009). Solid dispersions: a review. Pakistan Journal of Pharmaceutical Sciences. 22(2). pp. 234-246.
- Duggirala, N. K., Perry, M. L., Almarsson, Ö., & Zaworotko, M. J. (2016). Pharmaceutical cocrystals: along the path to improved medicines. Chemical Communications. 52(4). pp. 640–655. https://doi.org/10.1039/C5CC08216A
- Erizal, Z., Lili, F., Risda, Y. S., Henni, R., & Ayano, Horikawa Hidehiro, U. (2019). Multicomponent Crystal Of Mefenamic Acid And N-Methyl-D-Glucamine: Crystal Structures And Dissolution Study. Journal Of Pharmaceutical Sciences. 108(7). pp. 2341–2348. https://doi.org/10.1016/j.xphs.2019.02.003
- Esposito, T., Russo, P., Sansone, F., Aquino, R. P., Pepe, G., Mencherini, T., del Gaudio, P., Lauro, M. R., & Picerno, P. (2014). Microencapsulation by spray drying of Lannea microcarpa extract: Technological characteristics and antioxidant activity. Journal of Pharmacy & Pharmacognosy Research. 2(4). pp. 100–109.
- Fernandes, G. J., Kumar, L., Sharma, K., Tunge, R., & Rathnanand, M. (2018). A Review on Solubility Enhancement of Carvedilol—a BCS Class II Drug. Journal of Pharmaceutical Innovation. 13(3). pp. 197–212. https://doi.org/10.1007/s12247-018-9319-z
- Fung, M., Be̅rziņš, K., & Suryanarayanan, R. (2018). Physical Stability and Dissolution Behavior of Ketoconazole–Organic Acid Coamorphous Systems. Molecular Pharmaceutics. 15(5). pp. 1862–1869. https://doi.org/10.1021/acs.molpharmaceut.8b00035
- Gao, Y., Liao, J., Qi, X., Zhang, J. (2013). Coamorphous Repaglinide-Saccharin with Enhanced Dissolution. Int J Pharm. 450(1–2). pp. 290–305.
- Ghadi, R., & Dand, N. (2017). BCS class IV drugs: Highly notorious candidates for formulation development. Journal of Controlled Release. 248. pp. 71–95. https://doi.org/10.1016/j.jconrel.2017.01.014
- Gupta, R., Jain, V., Nagar, J. C., Ansari, A., Sharma, K., Sarkar, A., & Khan, Mohd. S. (2020). Bioavailability Enhancement Techniques for Poorly Soluble Drugs: A Review. Asian Journal of Pharmaceutical Research and Development. 8(2). pp. 75–78. https://doi.org/10.22270/ajprd.v8i2.664
- Hassan, A. S., Soliman, G. M., El-Mahdy, M. M., El-Gindy, G. E. (2018). Solubilization And Enhancement of Ex Vivo Vaginal Delivery of Progesterone Using Solid Dispersions, Inclusion Complexes and Micellar Solubilization. Curr Drug Deliv. 15(1).pp. 110–121.
- Heng, W., Su, M., Cheng, H., Shen, P., Liang, S., Zhang, L., Wei, Y., Gao, Y., Zhang, J., & Qian, S. (2020). Incorporation of Complexation into a Coamorphous System Dramatically Enhances Dissolution and Eliminates Gelation of Amorphous Lurasidone Hydrochloride. Molecular Pharmaceutics. 17(1). pp. 84–97. https://doi.org/10.1021/acs.molpharmaceut.9b00772
- Hiendrawan, S., Hartanti, A. W., Veriansyah, B., Widjojokusumo, E., Tjandrawinata, R. R. (2015). Solubility Enhancement of Ketoconazole via Salt and Cocrystal Formation. Int J Pharm Pharm Sci. 7(7). pp. 160–164.
- Humayun, H. Y., Shaarani, M. N. N. M., warrior, A., Abdullah, B., & Salam, M. A. (2016). The Effect of Co-solvent on the Solubility of a Sparingly Soluble Crystal of Benzoic Acid. Procedia Engineering. 148. pp. 1320–1325. https://doi.org/10.1016/j.proeng.2016.06.548
- In, C. W., Min, J. L., Sang, J. S., Woo, S. K., Nan, H. C., Guang, J. C. (2013). Anti-Solvent Co-Crystallization of Carbamazepine and Saccharin. Int J Pharm. 450(1–2). pp. 311–322.
- Jagdale, S., Patil, S., Kuchekar, B., Chabukswar, A. (2011). Preparation and Characterization of Metformin Hydrochloride-Compritol 888 Ato Solid Dispersion. J Young Pharm. 3(3). pp. 197–204.
- Jang, D., Sim, T., Oh, E. (2013). Formulation and Optimization of Spray-Dried Amlodipine Solid Dispersion for Enhanced Oral Absorption. Drug Dev Ind Pharm. 9(7). pp. 33–41.
- Jensen, K. T., Löbmann, K., Rades, T., Grohganz, H. (2014). Improving Co-Amorphous Drug Formulations by the Addition of the Highly Water Soluble Amino Acid, Proline. Pharmaceutics. 6(3). pp. 416–35.
- Kadam, S.V., Shinkar, D.M., Saudagar, R.B. (2013). Review on Solubility Enhancement Techniques. IJPBS. 3(3). pp. 462-475
- Katiyar, N., Singh, M. N., Yadav, P., Singh, H. N., Saha, S., & Saraf, S. A. (2018). Development of Naringenin Nanocrystals for Enhanced Solubility and Bioavailability. American Journal of PharmTech Research. 8(2). pp. 110–128.
- Kauppinen, A., Broekhuis, J., Grasmeijer, N., Tonnis, W., Ketolainen, J., Frijlink, H. W., et al. (2018). Efficient Production of Solid Dispersions by Spray Drying Solutions of High Solid Content Using A 3-Fluid Nozzle. Eur J Pharm Biopharm. 123. pp. 50–58.
- Krishnamoorthy, V., Nagalingam, A., Priya Ranjan Prasad, V., Parameshwaran, S., George, N., & Kaliyan, P. (2011). Characterization of olanzapine-solid dispersions. Iranian Journal of Pharmaceutical Research : IJPR. 10(1). pp. 13–24.
- Krstić, M., Manić, L., Martić, N., Vasiljević, D., Mračević, S. Đ., Vukmirović, S., & Rašković, A. (2020). Binary polymeric amorphous carvedilol solid dispersions: In vitro and in vivo characterization. European Journal of Pharmaceutical Sciences. 150. pp. 1-9. https://doi.org/10.1016/j.ejps.2020.105343
- Kumar, S., & Nanda, A. (2017). Pharmaceutical Cocrystals: An Overview. Indian Journal of Pharmaceutical Sciences. 79(6). pp. 858-871. https://doi.org/10.4172/pharmaceutical-sciences.1000302
- Lenz, E., Jensenkt., Blaabjergli., Knopk., Grohganzh., Lobmann, K, et al. (2015). Solid–State Properties and Dissolution Behaviour of Tablets Containing Co-Amorphous Indomethacin–Arginine. Eur J Pharm Biopharm. 96. pp. 44–52.
- Li, Y.-J., Hu, X.-B., Lu, X.-L., Liao, D.-H., Tang, T.-T., Wu, J.-Y., & Xiang, D.-X. (2017). Nanoemulsion-based delivery system for enhanced oral bioavailability and Caco-2 cell monolayers permeability of berberine hydrochloride. Drug Delivery. 24(1). pp. 1868–1873. https://doi.org/10.1080/10717544.2017.1410257
- Lobmann, K., Laitinen, R., Grohganz, H., Strachan, C., Rades, T., Gordon, K. (2013). A Theoretical and Spectroscopic Study of Co-Amorphous Naproxen and Indomethacin. Int J Pharm. 453. pp. 80–87.
- Lodagekara, A., Chavana, R. B., Mannavab, M. K. C., Yadava, B., Chellaa, N., Nangiab, A. K., C, & Shastrico, N. R. (2019). Amorphous Valsartan Nifedipine System: Preparation, Characterization, In Vitro And In Vivo Evaluation. European Journal Of Pharmaceutical Sciences. 139. pp. 1–9. https://doi.org/10.1208/s12249-016-0658-0
- Marko, K., Luka, M., Nikola, M., Dragana, V., Svetlana, Đ., Mračevića, et al. (2020). Binary Polymeric Amorphous Carvedilol Solid Dispersions: In Vitro and In Vivo Characterization. Eur J Pharm Sci. 150. pp. 1-9.
- Marquesa, C. S. F., Rezende, P., Andrade, L., Mendes, T. M. F., Allegretti, S. M., Bani, C., et al. (2018). Solid Dispersion of Praziquantel Enhanced Solubility and Improve the Efficacy of The Schistosomiasis Treatment. J Drug Deliv Sci Technol. 45(1). pp. 24–34.
- Mounika, P., Divya, G., Raj, S.V., Gowramma, A. (2016). Preparation and Characterization of Novel Co-Crystal Forms of Domperidone. Int J Med Pharm Res. 4(4). pp. 179–84.
- Muqtader Ahmed, M., Fatima, F., Abul Kalam, M., Alshamsan, A., Soliman, G. A., Shaikh, A. A., Alshahrani, S. M., Aldawsari, M. F., Bhatia, S., & Khalid Anwer, Md. (2020). Development of spray-dried amorphous solid dispersions of tadalafil using glycyrrhizin for enhanced dissolution and aphrodisiac activity in male rats. Saudi Pharmaceutical Journal. 28(12). pp. 1817–1826. https://doi.org/10.1016/j.jsps.2020.11.007
- Najih, Y. A., Widjaja, B., Riwanti, P., & Mu’alim, A. I. (2018). Characterization of Meloxicam And Malonic Acid Cocrystal Prepared With Slurry Method. Journal of Islamic Pharmacy. 3(2). pp. 51-58. https://doi.org/10.18860/jip.v3i2.6140
- Nugrahani, I., Auli, W. N. (2020). Diclofenac-Proline Nano-Co-Crystal Development, Characterization, In Vitro Dissolution and Diffusion Study. Heliyon. 6(9). pp. 1–9.
- Patel, S., Jain, P., & Parkhe, G. (2018). Formulation and Evaluation of Acyclovir Loaded Novel Nanoemulsion Gel for Topical Treatment of Herpes Simplex Viral Infections. Journal of Drug Delivery and Therapeutics. 8(5). pp. 265–270. https://doi.org/10.22270/jddt.v8i5-s.1968
- Priyanka, S., Mashan, A., Nagireddy, D., Sandeep, S., Suresh, B., Feng, Z, et al. (2020). Theophylline-Nicotinamide Pharmaceutical Co-Crystals Generated Using Hot Melt Extrusion Technology: Impact of Polymeric Carriers on Processability. J Drug Deliv Sci Technol. 61. pp. 1–9.
- Qian, S., Heng, W., Wei, Y., Zhang J., Gao, Y. (2015). Coamorphous Lurasidone Hydrochloride–Saccharin with Charge-Assisted Hydrogen Bonding Interaction Shows Improved Physical Stability and Enhanced Dissolution with Ph-Independent Solubility Behavior. Cryst Growth Des. 15(6). pp. 2920–2928.
- Raju, T., Rakesh, P., Nandu, K., Nilesh, M. (2020). Co-Crystals of Carvedilol: Preparation, Characterization and Evaluation. Int J App Pharm. 12(1). pp. 42–49.
- Savjani, K. T., Gajjar, A. K., & Savjani, J. K. (2012). Drug Solubility: Importance and Enhancement Techniques. ISRN Pharmaceutics. 2012. pp. 1–10. https://doi.org/10.5402/2012/195727
- Shalu, S. (2020). A Review on Solubility Enhancement Techniques. Ijppr Human. 19(1). pp. 312-328.
- Shan, X., Williams, A. C., & Khutoryanskiy, V. v. (2020). Polymer structure and property effects on solid dispersions with haloperidol: Poly(N-vinyl pyrrolidone) and poly(2-oxazolines) studies. International Journal of Pharmaceutics. 590. pp. 1-11. https://doi.org/10.1016/j.ijpharm.2020.119884
- Shi, Q., Moinuddin, S. M., & Cai, T. (2019). Advances in amorphous drug delivery systems. Acta Pharmaceutica Sinica B. 9(1). Pp. 19–35. https://doi.org/10.1016/j.apsb.2018.08.002
- Siahi-Shadbad, M. R., Ghanbarzadeh, S., Barzegar-Jalali, M., Valizadeh, H., Taherpoor, A., Mohammadi, G., Barzegar-Jalali, A., & Adibkia, K. (2014). Development and characterization of solid dispersion for dissolution improvement of furosemide by grinding method. Advanced Pharmaceutical Bulletin. 4(4). pp. 391–399. https://doi.org/10.5681/apb.2014.058
- Sonal, V. B., Vaibhav, P., Dmitry, Y. Z., Lynne, S. T., Qi, T. Z. (2021). Physical Stability and Dissolution of Lumefantrine Amorphous Solid Dispersions Produced by Spray Anti-Solvent Precipitation. J Pharm Sci. 110(6). pp. 2423–2431.
- Surini, S., Novitasari, D., Yanuar, A. (2020). Dissolution Enhancement of Lansoprazole Using Cocrystallization. Int J App Pharm. 12(1). pp. 1–5.
- Thenge, R., Patel, R., Kayande, N., & Mahajan, N. (2019). Cocrystals of Carvedilol: Preparation, Characterization And Evaluation. International Journal of Applied Pharmaceutics. pp. 42–49. https://doi.org/10.22159/ijap.2020v12i1.35640
- Vinesha, V., Sevukarajan, M., Rajalakshmi, R., Chowdary, G. T., Haritha, K. (2013). Enhancement of Solubility of Tadalafil by Cocrystal Approach. Int Res J Pharm. 4(4). pp. 218–23.
- Weili, H., Meiling, S., Hao, C., Peiya, S., Shujun, L., Linghe, Z., Yuanfeng, W., Yuan, G., Jianjun, Z., & Shuai, Q. (2020). Incorporation Of Complexation Into A Coamorphous System Dramatically Enhances Dissolution And Eliminates Gelation Of Amorphous Lurasidone Hydrochloride. Mol. Pharmaceutics. 17(1). pp. 84–97. https://doi.org/10.1021/acs.molpharmaceut.9b00772
- Wenxiang, D., Xitong, S., Meng, X., Mingming, H., Yinghua, S., Peng, Z. (2018). Preparation, Characterization, and In Vitro/Vivo Evaluation of Polymer-Assisting Formulation of Atorvastatin Calcium Based on Solid Dispersion Technique. Asian J Pharm Sci. 13. pp. 546–554.
- Wicaksono, Y., Rosidi, V. A., Saragih, S. Y., Fauziah, L. S., & Setyawan, D. (2021). Preparation of Spray Dried Amorphous Solids to Improve The Solubility and Dissolution Rate of Atorvastatin Calcium. Jurnal Teknologi. 83(2). pp. 77–83. https://doi.org/10.11113/jurnalteknologi.v83.14706
- Wicaksono, Y., Wisudyaningsih, B., & Siswoyo, T. A. (2017). Enhancement of solubility and dissolution rate of atorvastatin calcium by cocrystallization. Tropical Journal of Pharmaceutical Research. 16(7). pp. 1497. https://doi.org/10.4314/tjpr.v16i7.6
- Williams, H. D., Trevaskis, N. L., Charman, S. A., Shanker, R. M., Charman, W. N., Pouton, C. W., & Porter, C. J. H. (2013). Strategies to Address Low Drug Solubility in Discovery and Development. Pharmacological Reviews. 65(1). pp. 315–499. https://doi.org/10.1124/pr.112.005660
- Yang, C., Xu, X., Wang, J., & An, Z. (2012). Use of the Co-grinding Method to Enhance the Dissolution Behavior of a Poorly Water-Soluble Drug: Generation of Solvent-Free Drug–Polymer Solid Dispersions. Chemical & Pharmaceutical Bulletin. 60(7). pp. 837–845. https://doi.org/10.1248/cpb.c12-00034
- Zaini, E., Afriyani, Fitriani, L., Ismed, F., Horikawa, A., & Uekusa, H. (2020). Improved Solubility and Dissolution Rates in Novel Multicomponent Crystals of Piperine with Succinic Acid. Scientia Pharmaceutica. 88(2). pp. 1-12. https://doi.org/10.3390/scipharm88020021
- Zaini, E., Fitriani, L., Sari, R. Y., Rosaini, H., Horikawa, A., & Uekusa, H. (2019). Multicomponent Crystal of Mefenamic Acid and N-Methyl-d-Glucamine: Crystal Structures and Dissolution Study. Journal of Pharmaceutical Sciences. 108(7). pp. 2341–2348. https://doi.org/10.1016/j.xphs.2019.02.003.