Main Article Content

Abstract

Background: Diclofenac sodium is a non-steroidal anti-inflammatory drug (NSAID) widely prescribed for inflammation and pain. However, when used orally, diclofenac sodium has poor bioavailability because it undergoes first-pass metabolism in the liver, so only about 50% of the drug reaches systemic circulation. Therefore, the transdermal delivery system, in this case, transfersome nanovesicles, was chosen as an alternative to overcome these problems. Transfersome is a lipid vesicle with the best deformability in penetrating the skin layer among other nanovesicles. Transfersomes consist of active substances, phospholipids, surfactants, and other ingredients. The composition of phosphatidylcholine as a phospholipid and tween 80 as a surfactant is a variable that can affect the optimization of the transfersome formula. Therefore, the ratio of phospholipids and surfactants should be varied to obtain the most stable transfersome formula with high drug entrapment efficiency. Optimization as an approach to get the best combination of a formula can be done in a more efficient way using software called Design-Expert. This software is used to help carry out experimental designs, such as determining the optimum formula for a preparation. Objectives: This study aims to determine the ratio of soya phosphatidylcholine as a phospholipid and tween 80 as a surfactant in the optimum formula of diclofenac sodium transfersome vesicles using Design-Expert and to determine the characteristics of the resulting transfersome vesicles. Material and Methods: Optimizing the transfersome Diclofenac Sodium formula using the factorial design 22 with soya phosphatidylcholine and tween 80 factors, particle size response, and entrapment efficiency. The thin layer hydration method carried out the process of making diclofenac sodium transfersome. Results: The results obtained from this study, namely the optimum formula based on Design-Expert, obtained a ratio of soya phosphatidylcholine and tween 80 of 4.5%: 0.5%. The results of the characterization of the optimum formula obtained a particle size of 224.3 nm, a zeta potential of -57.1 mV, and entrapment efficiency of 99.85%. Conclusions: The results of the characterization of the diclofenac sodium transfersome have met the specifications required for each test.

Keywords

Transfersome Diclofenac sodium Design-Expert Characteristics

Article Details

How to Cite
Zubaydah, W. O. S., Andriani, R., Suryani, S., Indalifiani, A., Jannah, S. R. N., & Hidayati, D. (2023). Optimization of Soya Phosphatidylcholine and Tween 80 As A Preparation of Diclofenac Sodium Transfersome Vesicles Using Design-Expert: Optimasi Fosfatidilkolin Kedelai dan Tween 80 Sebagai Penyusun Vesikel Transfersom Natrium Diklofenak Menggunakan Design- Expert. Jurnal Farmasi Galenika (Galenika Journal of Pharmacy) (e-Journal), 9(1), 84-98. https://doi.org/10.22487/j24428744.2023.v9.i1.16085

References

  1. Ahad A, Abdulmohsen AA, Abdullah MA, Fahad IA, Mohammad R, Alaa EB, Mohd AA. (2017). Formulation and Characterization of Phospholipon® 90 G and Tween® 80 Based Transfersomes for Transdermal Delivery of Eprosartan Mesylate. Pharmaceutical Development and Technology, 23(8), 787-793. doi: 10.1080/10837450.2017.1330345.
  2. Ambarawati R, and Yulianita. (2019). Pengembangan Formulasi Gel Yang Mengandung Sistem Transfersome Ekstrak Daun Pandan (Pandanus amaryllifolius). Fitofarmaka Jurnal Ilmiah Farmasi, 9(2). 138-143
  3. Dalimunthe GI, and Ricky AS. (2021). Edge Activator: Effect of Concentration Variation of Tween 80 on Characteristics and Rate of Difusion Transfersome Sodium Diclofenac, Journal Syifa Sciences and Clinical Research, 3 (2), 78-86.
  4. Dudhipala N, Riyaz PM, Ahmed AAY, Nagaraj B. (2020). Effect of Lipid and Edge Activator Concentration on Development of Aceclofenac Loaded Transfersomes Gel for Transdermal Application: In Vitro and Ex Vivo Skin Permeation. Drug Development and Industrial Pharmacy, 46 (8), 1-11.
  5. Elfiyani R, Anisa A, Septian YP. (2017). Effect of Using the Combination of Tween 80 and Ethanol on the Forming and Physical Stability of Microemulsion of Eucalyptus Oil as Antibacterial, Journal of Young Pharmacists, 9(1s), s1-s4.
  6. Ermawati D. (2017). Transfersome: Sistem Penghantaran Obat Topikal dan Transdermal, Research Report, 180-186.
  7. Hidayat IR, Ade Z, Iyan S. (2021). Design-expert Software sebagai Alat Optimasi Formulasi Sediaan Farmasi. Majalah Farmasetika, 6 (1), 99-120.
  8. Kuncahyo I, Juniar KR, M. Muchalal. (2021). Pengaruh Perbandingan Tween 80 dan Fosfatidilkolin pada Formulasi Transfersom Naringenin dan Kajian Permeasi Berbasis Hidrogel, Journal of Pharmaceutical Science and Clinical Research, 3 (1), 327-338.
  9. Kurniawan C, Thomas BW, Perdamean S. (2004). Analisis Ukuran Partikel Menggunakan Free Software Image-J, Seminar Nasional Fisika, Serpong, 12-13 Juli 2011.
  10. Laouini A, Jaafar-Maalej C, Limayem-Blouza I, Sfar S, Charcosset C, Fessi H. (2012). Preparation, Characterization and Applications of Liposomes: State of the Art. Journal of Colloid Science and Biotechnology, 1(2), 147-168.
  11. Muthmainnah B. (2017). Skrining Fitokimia Senyawa Metabolit Sekunder dari Ekstrak Etanol Buah Delima (Punica granatum L.) dengan Metode Uji Warna. Media Farmasi, 13 (2), 23-28.
  12. Noval, Rosyifa. (2021). Dispersi Padat untuk Peningkatan Laju Disolusi Natrium Diklofenak dengan Variasi Konsentrasi Polivinil Pirolidon K30. Jurnal Sura Medika (JSM), 6 (2), 94 – 101.
  13. Nurmahliati H, Ferri W, Oktavia EP (2020). Pengaruh Perbedaan Konsentrasi Lesitin Kedelai dan Asam Kolat pada Karakterisitk Transfersom Pterostilben, Pharmaceutical Journal of Indonesia. 5 (2), 109-115.
  14. Opatha SAT, Varin T, Romchat C, (2020). Transfersomes: A Promising Nanoencapsulation Technique for Transdermal Drug Delivery, Pharmaceutics. 12 (855), 1-23.
  15. Rahayu BMS. (2019). Pengaruh Konsentrasi Surfaktan terhadap Ukuran Partikel Transfersom Ekstrak Kulit Manggis (Garcinia mangostana L.), skripsi, Universitas Brawijaya, Malang.
  16. Ramadhani RA, Riyadi DHS, Triwibowo B, and Kusumaningtyas RD. (2017). Review Pemanfaatan Design Expert untuk Optimasi Komposisi Campuran Minyak Nabati sebagai Bahan Baku Sintesis Biodiesel, Jurnal Teknik Kimia dan Lingkungan, 1(1). 11-16
  17. Ramadon D and Abdul M. (2016). Pemanfaatan Nanoteknologi dalam Sistem Penghantaran Obat Baru untuk Produk Bahan Alam, Jurnal Ilmu Kefarmasian Indonesia, 14 (2), 118-127.
  18. Ratnasari D and Effionora A. (2016). Karakterisasi Nanovesikel Transfersom sebagai Pembawa “Rutin” dalam Pengembangan Sediaan Transdermal, Jurnal Farmamedika, 1 (1), 12-18.
  19. Sari WP, Soniya T, Sherli P, and Septia A. (2020). Formulasi Gel Transfersom Limbah Kulit Bawang Merah (Allium cepa L.) menggunakan Perbandingan Fosfolipid dan Surfaktan, Jurnal Ilmu Kefarmasian Indonesia, 18 (1), 88-95.
  20. Sugiyati R, Iskandarsyah, and Joshita D. (2015). Formulasi dan Uji Penetrasi In Vitro Sediaan Gel Transfersom Mengandung Kofein sebagai Antiselulit, Jurnal Ilmu Kefarmasian Indonesia, 13 (2), 131-136.
  21. Vasanth S, Akhilesh D, Ravi GS, Shaila AL, Vivek MG, Sally AE, and Srinivas H. (2020). Development and Investigation of Vitamin C-Enriched Adapalene-Loaded Transfersome Gel: a Collegial Approach for the Treatment of Acne Vulgaris, AAPS PharmSciTech, 21 (61), 1-17.
  22. Yuan J, He M, Nannan C, Ai Z, Hengxun T, 2017, a Pharmacokinetic Study of Diclofenac Sodium in Rats, Biomedical Reports, 7 (1). 179-182.