Main Article Content
Abstract
Background: Moringa leaves (Moringa oleifera Lamk.) are plants from the Moringaceae family that have many properties and are often used empirically as traditional medicine. One of the benefits of M. oleifera leaves is immunomodulator, which functions to modulate the human immune system in both immunostimulants and immunosuppressants. Objectives: To provide information on the potential of flavonoids in M. oleifera leaves as immunomudulators developed as alternative therapies. Methods: Review of articles using original articles from national and international journals with the keywords "immunomodulator," "immunostimulant," "immunosuppressant," "Flavonoids," and "Moringa oleifera leaf or leaves". Results: Based on a search of various literature studies, M. oleifera leaf extract is proven as an immunomodulator with the most compounds found, namely flavonoids such as quercetin and kaempferol. This content can affect the immune response to trigger or inhibit the proliferation and activation of immune cells in the process of increasing or decreasing the immune system in the body. Conclusions: Moringa leaves have activity as immunomodulators that can help maintain the immune system in the body.
Keywords
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
- Abd-Elhakim, Y. M., El Bohi, K. M., Hassan, S. K., El Sayed, S., & Abd-Elmotal, S. M. (2018). Palliative effects of Moringa olifera ethanolic extract on hemato-immunologic impacts of melamine in rats. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association, 114, 1–10. https://doi.org/10.1016/j.fct.2018.02.020
- Amaglo, N. K., Bennett, R. N., Lo Curto, R. B., Rosa, E. A. S., Lo Turco, V., Giuffrida, A., Curto, A. Lo, Crea, F., & Timpo, G. M. (2010). Profiling selected phytochemicals and nutrients in different tissues of the multipurpose tree Moringa oleifera L., grown in Ghana. Food Chemistry, 122(4), 1047–1054. https://doi.org/https://doi.org/10.1016/j.foodchem.2010.03.073
- Anywar, G., Kakudidi, E., Byamukama, R., Mukonzo, J., Schubert, A., & Oryem-Origa, H. (2020). Data on medicinal plants used by herbalists for boosting immunity in people living with HIV/AIDS in Uganda. Data in Brief, 29, 105097. https://doi.org/10.1016/j.dib.2019.105097
- Behl, T., Kumar, K., Brisc, C., Rus, M., Nistor-Cseppento, D. C., Bustea, C., Aron, R. A. C., Pantis, C., Zengin, G., Sehgal, A., Kaur, R., Kumar, A., Arora, S., Setia, D., Chandel, D., & Bungau, S. (2021). Exploring the multifocal role of phytochemicals as immunomodulators. Biomedicine & Pharmacotherapy, 133, 110959. https://doi.org/https://doi.org/10.1016/j.biopha.2020.110959
- Braham, F., Carvalho, D. O., Almeida, C. M. R., Zaidi, F., Magalhães, J. M. C. S., Guido, L. F., & Gonçalves, M. P. (2020). Online HPLC-DPPH screening method for evaluation of radical scavenging phenols extracted from Moringa oleifera leaves. South African Journal of Botany, 129, 146–154. https://doi.org/https://doi.org/10.1016/j.sajb.2019.04.001
- Chahal, K., & Jha, M. (2020). In-Vivo Study of Boswellia serrata for Modulating Immune System and Quenching Free Radicals. Advances in Zoology and Botany, 8, 358–368. https://doi.org/10.13189/azb.2020.080408
- Chigurupati, S., Al-murikhy, A., Almahmoud, S. A., Almoshari, Y., Saber Ahmed, A., Vijayabalan, S., Ghazi Felemban, S., & Raj Palanimuthu, V. (2022). Molecular docking of phenolic compounds and screening of antioxidant and antidiabetic potential of Moringa oleifera ethanolic leaves extract from Qassim region, Saudi Arabia. Saudi Journal of Biological Sciences, 29(2), 854–859. https://doi.org/https://doi.org/10.1016/j.sjbs.2021.10.021
- Coppin, J. P., Xu, Y., Chen, H., Pan, M.-H., Ho, C.-T., Juliani, R., Simon, J. E., & Wu, Q. (2013). Determination of flavonoids by LC/MS and anti-inflammatory activity in Moringa oleifera. Journal of Functional Foods, 5(4), 1892–1899. https://doi.org/https://doi.org/10.1016/j.jff.2013.09.010
- Devaraj, V. C., Krishna, B. G., & Viswanatha, G. L. (2011). Simultaneous determination of quercetin, rutin and kaempferol in the leaf extracts of Moringa oleifera Lam. and Raphinus sativus Linn. by liquid chromatography-tandem mass spectrometry. Zhong Xi Yi Jie He Xue Bao = Journal of Chinese Integrative Medicine, 9(9), 1022–1030. https://doi.org/10.3736/jcim20110914
- Dillasamola, D., Aldi, Y., Fakhri, M., Diliarosta, S., Biomechy Oktomalio, P., & Noverial. (2018). Immunomodulatory effect test from moringa leaf extract (Moringa oleifera l.) with carbon clearance method in male white mice. Asian Journal of Pharmaceutical and Clinical Research, 11(9), 241–245. https://doi.org/10.22159/ajpcr.2018.v11i9.26703
- Dong, Z., Li, C., Huang, Q., Zhang, B., & Fu, X. (2018). Characterization of a novel polysaccharide from the leaves of Moringa oleifera and its immunostimulatory activity. Journal of Functional Foods, 49, 391–400. https://doi.org/10.1016/j.jff.2018.09.002
- Fathir, A., Rifa’i, M., & Widodo. (2014). Aktivitas Ekstrak Daun Kelor Terhadap Sel-T Helper dan Sel-T Sitotoksik pada Mencit yang Diinfeksi Salmonella thypi. Jurnal Veteriner, 15(1), 114–122.
- González, M., Claudia, L., Martínez, L., Martínez-Ortiz, E. J., González-Trujano, M. E., Déciga-Campos, M., Ventura-Martínez, R., & Díaz-Reval, I. (2017). Moringa oleifera, a species with potential analgesic and anti-inflammatory activities. Biomedicine & Pharmacotherapy, 87, 482–488. https://doi.org/https://doi.org/10.1016/j.biopha.2016.12.107
- Guan, S., Liu, Q., Gu, H., Zhang, Y.-Y., Wei, P.-L., Qi, Y.-F., Liu, J., & Wang, Z. (2020). Pluripotent anti-inflammatory immunomodulatory effects of papaverine against cerebral ischemic-reperfusion injury. Journal of Pharmacological Sciences, 144(2), 69–75. https://doi.org/10.1016/j.jphs.2020.07.008
- Guo, H.-W., Yun, C.-X., Hou, G.-H., Du, J., Huang, X., Lu, Y., Keller, E. T., Zhang, J., & Deng, J.-G. (2014). Mangiferin attenuates TH1/TH2 cytokine imbalance in an ovalbumin-induced asthmatic mouse model. PloS One, 9(6), e100394. https://doi.org/10.1371/journal.pone.0100394
- Hefni, M., Rifa’i, M., & Widodo. (2013). Aktivitas Ekstrak Daun Kelor terhadap Respons Imun Humoral pada Mencit yang Diinfeksi Salmonella typhi. Jurnal Veteriner, 14(4), 519–526.
- Husni, E., Badriyya, E., Putri, L., & Aldi, Y. (2021). The effect of ethanol extract of moringa leaf (moringa oleifera lam) against the activity and capacity of phagocytosis of macrofag cells and the percentage of leukosit cells of white mice. Pharmacognosy Journal, 13(3), 706–712. https://doi.org/10.5530/pj.2021.13.90
- Jantan, I., Ahmad, W., & Bukhari, S. N. A. (2015). Plant-derived immunomodulators: an insight on their preclinical evaluation and clinical trials. Frontiers in Plant Science, 6, 655. https://doi.org/10.3389/fpls.2015.00655
- Khumaidi, A., Hertiani, T., & Sasmito, E. (2015). Analisis Korelasi antara Efek Proliferasi Limfosit dengan Kandungan Fenolik dan Flavonoid Subfraksi Etil Asetat Myrmecodia tuberosa (Non Jack) Bl. secara In Vitro pada Mencit BALB/C (Correlation Analysis between Lymphocyte Proliferation Effect with Phenol. Jurnal Ilmu Kefarmasian Indonesia, 13(1), 102–107.
- Kooltheat, N., Sranujit, R. P., Chumark, P., Potup, P., Laytragoon-Lewin, N., & Usuwanthim, K. (2014). An ethyl acetate fraction of Moringa oleifera Lam. Inhibits human macrophage cytokine production induced by cigarette smoke. Nutrients, 6(2), 697–710. https://doi.org/10.3390/nu6020697
- Kurokawa, M., Wadhwani, A., Kai, H., Hidaka, M., Yoshida, H., Sugita, C., Watanabe, W., Matsuno, K., & Hagiwara, A. (2016). Activation of Cellular Immunity in Herpes Simplex Virus Type 1-Infected Mice by the Oral Administration of Aqueous Extract of Moringa oleifera Lam. Leaves. Phytotherapy Research, 30(5), 797–804. https://doi.org/10.1002/ptr.5580
- Li, C., Dong, Z., Zhang, B., Huang, Q., Liu, G., & Fu, X. (2020). Structural characterization and immune enhancement activity of a novel polysaccharide from Moringa oleifera leaves. Carbohydrate Polymers, 234, 115897. https://doi.org/https://doi.org/10.1016/j.carbpol.2020.115897
- Lotter, S. H. C. T., Rybicki, E. P., & Chikwamba, R. K. (2012). Plant made anti-HIV microbicides a field of opportunity. Biotechnology Advances, 30(6), 1614–1626. https://doi.org/10.1016/j.biotechadv.2012.06.002
- Luetragoon, T., Pankla Sranujit, R., Noysang, C., Thongsri, Y., Potup, P., Suphrom, N., Nuengchamnong, N., & Usuwanthim, K. (2020). Bioactive Compounds in Moringa oleifera Lam. Leaves Inhibit the Pro-Inflammatory Mediators in Lipopolysaccharide-Induced Human Monocyte-Derived Macrophages. Molecules (Basel, Switzerland), 25(1). https://doi.org/10.3390/molecules25010191
- Marrufo, T. J., Encarnação, S., Maria, O., Silva, D., & Duarte, A. (2013). Chemical characterization and determination of antioxidant and antimicrobial activities of the leaves of Moringa oleifera. International Network Environmental Meanagement Conflicts, 2(1), 1–15.
- Marshall, J. S., Warrington, R., Watson, W., & Kim, H. L. (2018). An introduction to immunology and immunopathology. Journal of Allergy, Asthma and Clinical Immunology, 14(s2), 1–10. https://doi.org/10.1186/s13223-018-0278-1
- Misra, S., & Misra, M. K. (2014). Nutritional evaluation of some leafy vegetable used by the tribal and rural people of south Odisha, India. J. Nat. Prod. Plant Resour, 4(1), 23–28. http://scholarsresearchlibrary.com/archive.html
- Nfambi, J., Bbosa, G. S., Sembajwe, L. F., Gakunga, J., & Kasolo, J. N. (2015). Immunomodulatory activity of methanolic leaf extract of Moringa oleifera in Wistar albino rats. Basic and Clinical Physiology and Pharmacology, 26(6), 603–611. https://doi.org/doi:10.1515/jbcpp-2014-0104
- Ojiako, E. N. (2014). Phytochemical Analysis and Antimicrobial Screening Of Moringa Oleifera Leaves Extract. The International Journal Of Engineering And Science (IJES), 3(3), 32–35.
- Oluduro, A. O. (2012). Evaluation of Antimicrobial properties and nutritional potentials of Moringa oleifera Lam.leaf in South-Western Nigeria. Malaysian Journal of Microbiology, 8, 59–67. https://doi.org/10.21161/mjm.02912
- Qureshi, A. A., Guan, X. Q., Reis, J. C., Papasian, C. J., Jabre, S., Morrison, D. C., & Qureshi, N. (2012). Inhibition of nitric oxide and inflammatory cytokines in LPS-stimulated murine macrophages by resveratrol, a potent proteasome inhibitor. Lipids in Health and Disease, 11, 76. https://doi.org/10.1186/1476-511X-11-76
- Rabinovich, G. A., & Croci, D. O. (2012). Regulatory circuits mediated by lectin-glycan interactions in autoimmunity and cancer. Immunity, 36(3), 322–335. https://doi.org/10.1016/j.immuni.2012.03.004
- Rachmawati, I., & Rifa’i, M. (2014). In Vitro Immunomodulatory Activity of Aqueous Extract of Moringa oleifera Lam. Leaf to the CD4 +, CD8+ and B220+ Cells in Mus musculus. The Journal of Experimental Life Sciences, 4(1), 15–20. https://doi.org/10.21776/ub.jels.2014.004.01.03
- Rianto, W. R., Sumarjan, S., & Santoso, B. B. (2020). Karakter Tanaman Kelor (Moringa oleifera Lam.) Aksesi Kabupaten Lombok Utara. Jurnal Sains Teknologi & Lingkungan, 6(1), 116–131. https://doi.org/10.29303/jstl.v6i1.158
- Santos, J., Brito, M., Ferreira, R., Moura, A. P., Sousa, T., Batista, T., Mangueira, V., Leite, F., Cruz, R., Vieira, G., Lira, B., Athayde-Filho, P., Souza, H., Costa, N., Veras, R., Barbosa-Filho, J. M., Magalhães, H., & Sobral, M. (2018). Th1-Biased Immunomodulation and In Vivo Antitumor Effect of a Novel Piperine Analogue. International Journal of Molecular Sciences, 19(9). https://doi.org/10.3390/ijms19092594
- Shah, M. A., Bosco, S. J. D., & Mir, S. A. (2015). Effect of Moringa oleifera leaf extract on the physicochemical properties of modified atmosphere packaged raw beef. Food Packaging and Shelf Life, 3, 31–38. https://doi.org/10.1016/j.fpsl.2014.10.001
- Singh, B. N., Singh, B. R., Singh, R. L., Prakash, D., Dhakarey, R., Upadhyay, G., & Singh, H. B. (2009). Oxidative DNA damage protective activity, antioxidant and anti-quorum sensing potentials of Moringa oleifera. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association, 47(6), 1109–1116. https://doi.org/10.1016/j.fct.2009.01.034
- Sulastri, E., Zubair, M. S., Anas, N. I., Abidin, S., Hardani, R., Yulianti, R., & Aliyah. (2018). Total Phenolic, Total Flavonoid, Quercetin Content and Antioxidant Activity of Standardized Extract of Moringa oleifera Leaf from Regions with Different Elevation. Pharmacognosy Journal, 10(6s). https://doi.org/10.5530/pj.2018.6s.20
- Vongsak, B., Gritsanapan, W., Wongkrajang, Y., & Jantan, I. (2013). In vitro inhibitory effects of moringa oleifera leaf extract and its major components on chemiluminescence and chemotactic activity of phagocytes. Natural Product Communications, 8(11), 1559–1561. https://doi.org/10.1177/1934578x1300801115
- Vongsak, B., Sithisarn, P., Mangmool, S., Thongpraditchote, S., Wongkrajang, Y., & Gritsanapan, W. (2013). Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. Industrial Crops and Products, 44, 566–571. https://doi.org/10.1016/j.indcrop.2012.09.021
- Wahyuni, W., Leorita, M., Fristiohady, A., Yusuf, M. I., Malik, F., & Febriansyah, H. (2019). Efek Imunomodulator Ekstrak Etanol Spons Xestospongia Sp. Terhadap Aktivitas Fagositosis Makrofag Pada Mencit Jantan Galur Balb/C. Jurnal Mandala Pharmacon Indonesia, 5(1). https://doi.org/10.35311/jmpi.v5i01.38
- Waterman, C., Cheng, D. M., Rojas-Silva, P., Poulev, A., Dreifus, J., Lila, M. A., & Raskin, I. (2014). Stable, water extractable isothiocyanates from Moringa oleifera leaves attenuate inflammation in vitro. Phytochemistry, 103, 114–122. https://doi.org/10.1016/j.phytochem.2014.03.028
- Yahfoufi, N., Alsadi, N., Jambi, M., & Matar, C. (2018). The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients, 10(11). https://doi.org/10.3390/nu10111618
- Zhou, M., Huang, L., Li, L., Wei, Y., Shu, J., Liu, X., & Huang, H. (2017). New furostanol saponins with anti-inflammatory and cytotoxic activities from the rhizomes of Smilax davidiana. Steroids, 127, 62–68. https://doi.org/https://doi.org/10.1016/j.steroids.2017.08.013