Main Article Content
Abstract
Background: Obesity is a condition that occurs due to an imbalance between energy intake and expenditure. Lipase enzymes play an important role in the process of fat metabolism, making it a target in obesity treatment strategies. Jombang plant has been used for generations as an alternative treatment for various diseases. The main content of secondary metabolite compounds in jombang plants are phenolics, flavonoids, terpenoids, and alkaloids. Objective: This study was conducted to determine the activity and potential inhibition of jombang plant (Taraxacum officinale F.H. Wigg.) against lipase enzyme in vitro. Materials and Methods: The phytochemical screening was determined by a color change reaction with certain reagents, while total phenolic content was carried out using Folin-Ciocalteau reagent spectrophotometrically. The inhibitory activity of 96% ethanol extract of jombang leaves as well as orlistat as positive control was measured by titration method and using olive oil substrate. The extract concentrations used were 125 ppm, 250 ppm, and 500 ppm. Results: Jombang leaf extract contains alkaloid, phenolic, flavonoid and terpenoid compounds qualitatively. Determination of total phenolic content in 96% ethanol extract of jombang leaves was obtained at 12.69 ± 0.91 mgGAE/g. The highest percentage of inhibition was found at a concentration of 500 ppm which amounted to 103.85%. The difference in the percentage of inhibition in all groups showed no significant difference (Sig>0.05). Conclusion: This study shows that jombang leaf extract is able to inhibit lipase enzyme activity with the highest percentage of inhibition was 103,85%.
Keywords
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
- Aabideen, Z. U., Mumtaz, M. W., Akhtar, M. T., Mukhtar, H., Raza, S. A., Touqeer, T., & Saari, N. (2020). Anti-Obesity Attributes; UHPLC-QTOF-MS/MS-Based Metabolite Profiling and Molecular Docking Insights of Taraxacum officinale. Molecules (Basel, Switzerland), 25(21). https://doi.org/10.3390/molecules25214935
- Boccellino, M., & D’Angelo, S. (2020). Anti-obesity effects of polyphenol intake: Current status and future possibilities. International Journal of Molecular Sciences, 21(16), 1–24. https://doi.org/10.3390/ijms21165642
- Bougarne, N., Weyers, B., Desmet, S. J., Deckers, J., Ray, D. W., Staels, B., & De Bosscher, K. (2018). Molecular actions of PPARα in lipid metabolism and inflammation. Endocrine Reviews, 39(5), 760–802. https://doi.org/10.1210/er.2018-00064
- Choi, J., Yoon, K. D., & Kim, J. (2018). Chemical constituents from Taraxacum officinale and their α-glucosidase inhibitory activities. Bioorganic and Medicinal Chemistry Letters, 28(3), 476–481. https://doi.org/10.1016/j.bmcl.2017.12.014
- Déclaire Mabou, F., Belinda, I., & Yossa, N. (2021). TERPENES : structural classification and biological activities. IOSR Journal Of Pharmacy And Biological Sciences (IOSR-JPBS) e-ISSN, 16(3), 2319–7676. https://doi.org/10.9790/3008-1603012540
- Di Napoli, A., & Zucchetti, P. (2021). A comprehensive review of the benefits of Taraxacum officinale on human health. Bulletin of the National Research Centre, 45(1), 1–7. https://doi.org/10.1186/s42269-021-00567-1
- Ding, X., Jian, T., Li, J., Lv, H., Tong, B., Li, J., Meng, X., Ren, B., & Chen, J. (2020). Chicoric Acid Ameliorates Nonalcoholic Fatty Liver Disease via the AMPK/Nrf2/NF κ B Signaling Pathway and Restores Gut Microbiota in High-Fat-Diet-Fed Mice. Oxidative Medicine and Cellular Longevity, 2020. https://doi.org/10.1155/2020/9734560
- DiPiro, J. T. G. C. Y. L. M. P. S. T. H. T. D. N. and V. E. (2020). Pharmacotherapy: A Pathophysiologic Approach (Eleventh). McGraw Hill.
- Edori, O. S., & Marcus, A. C. (2019). Biochemistry & Analytical Biochemistry Phytochemical and Anti-microbial Screening of Phyllantus fratenus and Taraxacuim officinale Leaves. January. https://doi.org/10.4172/2161-1009.1000376
- Farnsworth, N. R. (1966). Biological and Phytochemical Screening of Plants. Science, 151(3712), 874–875. https://doi.org/10.1126/science.151.3712.874
- Gadde, K. M., Martin, C. K., Berthoud, H. R., & Heymsfield, S. B. (2018). Obesity: Pathophysiology and Management. Journal of the American College of Cardiology, 71(1), 69–84. https://doi.org/10.1016/j.jacc.2017.11.011
- Grauso, L., Emrick, S., Bonanomi, G., & Lanzotti, V. (2019). Metabolomics of the alimurgic plants Taraxacum officinale, Papaver rhoeas and Urtica dioica by combined NMR and GC–MS analysis. Phytochemical Analysis, 30(5), 535–546. https://doi.org/10.1002/pca.2845
- Habibi, A. I., Firmansyah, R. A., & Setyawati, S. M. (2018). Skrining Fitokimia Ekstrak n-Heksan Korteks Batang Salam (Syzygium polyanthum). Indonesian Journal of Chemical Science, 7(1), 1–4.
- Hayat, J., Akodad, M., Moumen, A., Baghour, M., Skalli, A., Ezrari, S., & Belmalha, S. (2020). Phytochemical screening, polyphenols, flavonoids and tannin content, antioxidant activities and FTIR characterization of Marrubium vulgare L. from 2 different localities of Northeast of Morocco. Heliyon, 6(11), e05609. https://doi.org/10.1016/j.heliyon.2020.e05609
- Herrera-pool, E., Ramos-díaz, A. L., Lizardi-jim, M. A., García-cruz, U., & Pacheco, N. (2021). Ultrasonics Sonochemistry Effect of solvent polarity on the Ultrasound Assisted extraction and antioxidant activity of phenolic compounds from habanero pepper leaves ( Capsicum chinense ) and its identification by UPLC-PDA-ESI-MS / MS. 76(June). https://doi.org/10.1016/j.ultsonch.2021.105658
- Iqbal, E., Salim, K. A., & Lim, L. B. L. (2015). Phytochemical screening, total phenolics and antioxidant activities of bark and leaf extracts of Goniothalamus velutinus (Airy Shaw) from Brunei Darussalam. Journal of King Saud University - Science, 27(3), 224–232. https://doi.org/10.1016/j.jksus.2015.02.003
- Ivanov, I. G. (2014). Polyphenols Content and Antioxidant Activities of Taraxacum. International Journal of Pharmacognosy and Phytochemical Research, 6(4), 889–893.
- Jaiswal, Preet, & Tripti. (2017). Production and Optimization of Lipase Enzyme from Mesophiles and Thermophiles. Journal of Microbial & Biochemical Technology, 09(03), 126–131. https://doi.org/10.4172/1948-5948.1000355
- Jedrejek, D., Lis, B., Rolnik, A., Stochmal, A., & Olas, B. (2019). Comparative phytochemical, cytotoxicity, antioxidant and haemostatic studies of Taraxacum officinale root preparations. Food and Chemical Toxicology, 126(February), 233–247. https://doi.org/10.1016/j.fct.2019.02.017
- Kancherla, N., Dhakshinamoothi, A., Chitra, K., & Komaram, R. B. (2019). Preliminary Analysis of Phytoconstituents and Evaluation of Anthelminthic Property of Cayratia auriculata (In Vitro). Maedica, 14(4), 350–356. https://doi.org/10.26574/maedica.2019.14.4.350
- Kementerian Kesehatan RI. (2017). FARMAKOPE HERBAL INDONESIA EDISI II. Kementerian Kesehatan RI. https://doi.org/10.1201/b12934-13
- Kementerian Kesehatan RI. (2018). Epidemi Obesitas. In Jurnal Kesehatan (pp. 1–8). http://www.p2ptm.kemkes.go.id/dokumen-ptm/factsheet-obesitas-kit-informasi-obesitas
- Kim, D. H., Park, Y. H., Lee, J. S., Jeong, H. Il, Lee, K. W., & Kang, T. H. (2020). Anti-obesity effect of DKB-117 through the inhibition of pancreatic lipase and α-amylase activity. Nutrients, 12(10), 1–13. https://doi.org/10.3390/nu12103053
- Lin, X., & Li, H. (2021). Obesity: Epidemiology, Pathophysiology, and Therapeutics. Frontiers in Endocrinology, 12(September), 1–9. https://doi.org/10.3389/fendo.2021.706978
- Mandal, S. C., Mandal, V., & Das, A. K. (2015). Qualitative Phytochemical Screening. In Essentials of Botanical Extraction. https://doi.org/10.1016/b978-0-12-802325-9.00009-4
- Parbuntari, H., Etika, S. B., Mulia, M., & Delvia, E. (2019). A Preliminary Screening of the Different of Secondary Metabolites Ruku-Ruku Leaves (Ocimum tenuiflorum Linnen) in West Sumatera. Eksakta : Berkala Ilmiah Bidang MIPA, 20(2), 17–24. https://doi.org/10.24036/eksakta/vol20-iss2/193
- Pastor-Villaescusa, B., Rodriguez, E. S., & Rangel-Huerta, O. D. (2018). Polyphenols in obesity and metabolic syndrome. In Obesity: Oxidative Stress and Dietary Antioxidants (pp. 213–239). https://doi.org/10.1016/B978-0-12-812504-5.00011-8
- Pfingstgraf, I. O., Taulescu, M., Pop, R. M., Orăsan, R., Vlase, L., Uifalean, A., Todea, D., Alexescu, T., Toma, C., & Pârvu, A. E. (2021). Protective effects of Taraxacum officinale l. (dandelion) root extract in experimental acute on chronic liver failure. Antioxidants, 10(4), 1–14. https://doi.org/10.3390/antiox10040504
- Saad, B., Ghareeb, B., & Kmail, A. (2021). Metabolic and Epigenetics Action Mechanisms of Antiobesity Medicinal Plants and Phytochemicals. Evidence-Based Complementary and Alternative Medicine, 2021. https://doi.org/10.1155/2021/9995903
- Satria, D. (2013). Complementary and Alternative Medicine: A fact or Promise? Idea Nursing Journal, 4(3), 82–90.
- Setyowati, W. A. E., Ariani, S. R. D., Ashadi, Mulyani, B., & Rahmawati, C. P. (2014). Skrining Fitokimia dan Identifikasi Komponen Utama Ekstrak Metanol Kulit Durian (Durio zibethinus Murr.) Varietas Petruk. Seminar Nasional Kimia Dan Pendidikan Kimia, VI, 271–280.
- Stoytcheva, M., Montero, G., Zlatev, R., A. Leon, J., & Gochev, V. (2012). Analytical Methods for Lipases Activity Determination: A Review. Current Analytical Chemistry, 8(3), 400–407. https://doi.org/10.2174/157341112801264879
- Subandi, S., Utami, P. W., & Brotosudarmo, T. H. P. (2019). The activity of flavonoid isolates from papaya (carica papaya l.) seed as pancreatic lipase inhibitor. IOP Conference Series: Materials Science and Engineering, 546(6). https://doi.org/10.1088/1757-899X/546/6/062031
- Sudhakar, M., Sasikumar, S. J., Silambanan, S., Natarajan, D., Ramakrishnan, R., Nair, A. J., & Kiran, M. S. (2020). Chlorogenic acid promotes development of brown adipocyte-like phenotype in 3T3-L1 adipocytes. Journal of Functional Foods, 74(July), 104161. https://doi.org/10.1016/j.jff.2020.104161
- Sukweenadhi, J., Yunita, O., Setiawan, F., Kartini, Siagian, M. T., Danduru, A. P., & Avanti, C. (2020). Antioxidant activity screening of seven Indonesian herbal extract. Biodiversitas, 21(5), 2062–2067. https://doi.org/10.13057/biodiv/d210532
- Vekic, J., Zeljkovic, A., Stefanovic, A., Jelic-Ivanovic, Z., & Spasojevic-Kalimanovska, V. (2019). Obesity and dyslipidemia. Metabolism: Clinical and Experimental, 92, 71–81. https://doi.org/10.1016/j.metabol.2018.11.005
- Xie, P. jun, Huang, L. xin, Zhang, C. hong, Ding, S. sha, Deng, Y. jun, & Wang, X. jie. (2018). Skin-care effects of dandelion leaf extract and stem extract: Antioxidant properties, tyrosinase inhibitory and molecular docking simulations. Industrial Crops and Products, 111(16), 238–246. https://doi.org/10.1016/j.indcrop.2017.10.017
- Xue, Y., Zhang, S., Du, M., & Zhu, M. (2017). Dandelion extract suppresses reactive oxidative species and inflammasome in intestinal epithelial cells Dandelion extract suppresses reactive oxidative species and inflammasome in intestinal epithelial cells. Journal of Functional Foods, 29(February), 10–18. https://doi.org/10.1016/j.jff.2016.11.032
- Zhang, J., Kang, M., Kim, M., Kim, M., Song, J., Lee, Y., & Kim, J. (2008). Pancreatic lipase inhibitory activity of Taraxacum officinale in vitro and in vivo *. 2, 200–203.
- Zhang, Y., Cai, P., Cheng, G., & Zhang, Y. (2022). A Brief Review of Phenolic Compounds Identified from Plants: Their Extraction, Analysis, and Biological Activity. Natural Product Communications, 17(1). https://doi.org/10.1177/1934578X211069721.