Main Article Content

Abstract

Background: Miana (Coleus scutellarioides) is a plant from the Lamiaceae family consisting of several varieties that are traditionally used as medicinal materials, especially its leaves. Objectives: The study aims to classify/discriminate miana varieties based on FT-IR spectroscopic profiles and chemometric analysis (PCA, HCA, and PLS). Material and Methods: There are four samples used in this study, namely purple miana, green miana, batik miana, and combination miana (combination colour). The powders of the four miana samples were analyzed using FT-IR spectroscopy, then analyzed by chemometric techniques using PCA, HCA, and PLS to see the clustering patterns and functional group markers of the samples. Results: Based on chemometric analysis of FT-IR data, the four species of miana leaves showed grouping based on their varieties, respectively. The total PC value was 99.5% (PC-1 97.7% and PC-2 1.8%). HCA analysis at a distance of 2.5 resulted in 4 groups: a (DMB, DMK, and DMU), b (DMU and DMK), c (DMU and DMK), and d (DMH). PLS analysis using VIP scores showed C–H and C=O groups with values > 1. Conclusions: The combination of FT-IR and chemometrics can be applied to discriminate miana samples in quality control and authentication of traditional medicine raw materials. Analysis with LC-MS/MS and NMR instruments is needed for further analysis and support compounds that have the potential to distinguish the four miana varieties.

Keywords

multivariate analysis Coleus scutellarioides FT-IR metabolomics spectroscopy

Article Details

Author Biography

Reny Syahruni, Sekolah Tinggi Ilmu Farmasi Makassar

Divisi Biologi Farmasi, Sekolah Tinggi Ilmu Farmasi Makassar, Jalan Perintis Kemerdekaan Km. 13,7 Daya, Makassar 90242, Sulawesi Selatan, Indonesia

How to Cite
Syahruni, R., Umar, A. H., & Lido, F. (2024). Metabolite Fingerprints and Chemometrics-Based Approach for Discrimination of Miana (Coleus scutellarioides) Variety: Authentication of Traditional Medicine Raw Materials. Jurnal Farmasi Galenika (Galenika Journal of Pharmacy) (e-Journal), 10(2), 257-269. https://doi.org/10.22487/j24428744.2024.v10.i2.16534

References

  1. Akaputra, R., Hatta, M., Massi, M. N., Djaharuddin, I., Bukhari, A., Aminuddin, A., … Azhar, A. (2023). Decreasing mRNA HMGB1 expression in Klebsiella pneumoniae infection treated by Miana (Coleus scutellarioides (L.) Benth): A cohort experimental study. Annals of Medicine and Surgery, 85(6), 2395–2399. https://doi.org/10.1097/MS9.0000000000000908
  2. Ayu, A. C., Ida, M., Moelyono, M., & Fakhriati, S. G. (2018). Total anthocyanin content and identification of anthocyanidin from Plectranthus scutellarioides (L.) R. Br leaves. Research Journal of Chemistry and Environment.
  3. Aziz, P., Muhammad, N., Intisar, A., Abid, M. A., Din, M. I., Yaseen, M., … Ejaz, R. (2021). Constituents and antibacterial activity of leaf essential oil of Plectranthus scutellarioides. Plant Biosystems, 155(6), 1247–1252. https://doi.org/10.1080/11263504.2020.1837279
  4. Bismelah, N. A., Ahmad, R., Mohamed Kassim, Z. H., Ismail, N. H., & Rasol, N. E. (2022). The antibacterial effect of Plectranthus scutellarioides (L.) R.Br. Leaves extract against bacteria associated with peri-implantitis. Journal of Traditional and Complementary Medicine, 12(6), 556–566. https://doi.org/10.1016/j.jtcme.2022.07.002
  5. Dörr, O. S., Zimmermann, B. F., Kögler, S., & Mibus, H. (2019). Influence of leaf temperature and blue light on the accumulation of rosmarinic acid and other phenolic compounds in Plectranthus scutellarioides (L.). Environmental and Experimental Botany, 167, 103830. https://doi.org/10.1016/j.envexpbot.2019.103830
  6. Hegazi, N. M., Khattab, A. R., Frolov, A., Wessjohann, L. A., & Farag, M. A. (2022). Authentication of saffron spice accessions from its common substitutes via a multiplex approach of UV/VIS fingerprints and UPLC/MS using molecular networking and chemometrics. Food Chemistry, 367, 130739. https://doi.org/10.1016/j.foodchem.2021.130739
  7. Joshi, R., Sathasivam, R., Park, S. U., Lee, H., Kim, M. S., Baek, I., & Cho, B.-K. (2022). Application of fourier transform infrared spectroscopy and multivariate analysis methods for the non-destructive evaluation of phenolics compounds in Moringa powder. Agriculture, 12(1), 10. https://doi.org/10.3390/agriculture12010010
  8. Kautsar, A., Wahyuni, W. T., Syafitri, U. D., Muflihah, S., Mawadah, N., Rohaeti, E., … Rafi, M. (2021). Data fusion of UV-Vis and FTIR spectra combined with principal component analysis for distinguishing of Andrographis paniculata extracts based on cultivation ages and solvent extraction. Indonesian Journal of Chemistry, 21(3), 753–760. https://doi.org/10.22146/ijc.60321
  9. Kucharska-Ambrożej, K., Martyna, A., Karpińska, J., Kiełtyka-Dadasiewicz, A., & Kubat-Sikorska, A. (2021). Quality control of mint species based on UV-VIS and FTIR spectral data supported by chemometric tools. Food Control, 129, 108228. https://doi.org/10.1016/j.foodcont.2021.108228
  10. Losso, K., Bec, K. B., Mayr, S., Grabska, J., Stuppner, S., Jones, M., … Huck, C. W. (2022). Rapid discrimination of Curcuma longa and Curcuma xanthorrhiza using direct analysis in real time mass spectrometry and near infrared spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 265, 120347. https://doi.org/10.1016/j.saa.2021.120347
  11. Mashiane, P., Manhivi, V. E., Shoko, T., Slabbert, R. M., Sultanbawa, Y., & Sivakumar, D. (2021). Cooking african pumpkin leaves (Momordica balsamina L.) by stir-frying improved bioactivity and bioaccessibility of metabolites-metabolomic and chemometric approaches. Foods, 10(11), 2890. https://doi.org/10.3390/foods10112890
  12. Rafi, M., Rismayani, W., Sugiarti, R. M., Syafitri, U. D., Wahyuni, W. T., & Rohaeti, E. (2021). FTIR-based fingerprinting combined with chemometrics for discrimination of Sonchus arvensis leaves extracts of various extracting solvents and the correlation with its antioxidant activity. Indonesian Journal of Pharmacy, 132–140. https://doi.org/10.22146/ijp.755
  13. Rohman, A., Ikhtiarini, A. N., Setyaningsih, W., Rafi, M., Aminah, N. S., Insanu, M., … Santosa, D. (2021). The use of chemometrics for classification of sidaguri (Sida rhombifolia) based on FTIR spectra and antiradical activities. Indonesian Journal of Chemistry, 21(6), 1568–1576. https://doi.org/10.22146/ijc.64360
  14. Silalahi, M., Nisyawati, Walujo, E. B., Supriatna, J., & Mangunwardoyo, W. (2015). The local knowledge of medicinal plants trader and diversity of medicinal plants in the Kabanjahe traditional market, North Sumatra, Indonesia. Journal of Ethnopharmacology, 175, 432–443. https://doi.org/10.1016/j.jep.2015.09.009
  15. Tambaru, E., Ura’, R., & Tuwo, M. (2023). Diversity of herbal medicine in Mamasa District, West Sulawesi, Indonesia. Biodiversitas Journal of Biological Diversity, 24(4). https://doi.org/10.13057/biodiv/d240410
  16. Tew, W. Y., Ying, C., Wujun, Z., Baocai, L., Yoon, T. L., Yam, M. F., & Jingying, C. (2022). Application of FT-IR spectroscopy and chemometric technique for the identification of three different parts of Camellia nitidissima and discrimination of its authenticated product. Frontiers in Pharmacology, 13. https://doi.org/10.3389/fphar.2022.931203
  17. Truzzi, E., Durante, C., Bertelli, D., Catellani, B., Pellacani, S., & Benvenuti, S. (2022). Rapid classification and recognition method of the species and chemotypes of essential oils by ATR-FTIR spectroscopy coupled with chemometrics. Molecules, 27(17), 5618. https://doi.org/10.3390/molecules27175618
  18. Umar, Abd Halim, Syahruni, R., Burhan, A., Maryam, F., Amin, A., Marwati, M., & Masero, L. R. (2016). Determinasi dan analisis finger print tanaman murbei (Morus alba Lour) sebagai bahan baku obat tradisional dengan metode spektroskopi FT-IR dan kemometrik. Pharmacon, 5(1). https://doi.org/10.35799/pha.5.2016.11227
  19. Umar, Abdul Halim, Ratnadewi, D., Rafi, M., & Sulistyaningsih, Y. C. (2021). Untargeted metabolomics analysis using FTIR and UHPLC-Q-Orbitrap HRMS of two Curculigo species and evaluation of their antioxidant and α-glucosidase inhibitory activities. Metabolites, 11(1), 42. https://doi.org/10.3390/metabo11010042
  20. Umar, Abdul Halim, Ratnadewi, D., Rafi, M., Sulistyaningsih, Y. C., & Hamim, H. (2023). Phenolics profile and antioxidant activities of in vitro propagules and field-raised plant organs of Curculigo latifolia. Journal of Applied Pharmaceutical Science, 13,(4), 168–185. https://doi.org/10.7324/JAPS.2023.55995
  21. Umar, Abdul Halim, Syahruni, R., Ranteta’dung, I., & Rafi, M. (2023). FTIR-based fingerprinting combined with chemometrics method for rapid discrimination of Jatropha spp. (Euphorbiaceae) from different regions in South Sulawesi. Journal of Applied Pharmaceutical Science, 13,(1), 139–149. https://doi.org/10.7324/JAPS.2023.130113
  22. Zhan, W., Yang, X., Lu, G., Deng, Y., & Yang, L. (2022a). A rapid quality grade discrimination method for Gastrodia elata powder using ATR-FTIR and chemometrics. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 264, 120189. https://doi.org/10.1016/j.saa.2021.120189
  23. Zhan, W., Yang, X., Lu, G., Deng, Y., & Yang, L. (2022b). A rapid quality grade discrimination method for Gastrodia elata powderusing ATR-FTIR and chemometrics. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 264, 120189. https://doi.org/10.1016/j.saa.2021.120189
  24. Zhang, Y.-C., Deng, J., Lin, X.-L., Li, Y.-M., Sheng, H.-X., Xia, B.-H., & Lin, L.-M. (2022). Use of ATR-FTIR spectroscopy and chemometrics for the variation of active components in different harvesting periods of Lonicera japonica. International Journal of Analytical Chemistry, 2022, e8850914. https://doi.org/10.1155/2022/8850914