Main Article Content

Abstract

Background: Tempeh is a widely consumed food due to its health benefits, affordability, and suitability for long-term consumption. The production process of tempeh from soybeans involves several stages, including soaking, dehulling, and inoculation with Rhizopus oligosporus yeast. Fermentation plays a key role in enhancing the nutritional quality of tempeh, particularly by increasing the levels of aglycone isoflavones. Tempeh contains three major types of aglycone isoflavones: daidzein, glycitein, and genistein. Among these, daidzein and genistein are classified as phytoestrogens due to their structural similarity to endogenous estrogen and their associated health-promoting properties. Objectives: This study was conducted on six different soybean seed varieties and their corresponding tempeh products, processed using traditional methods and subjected to three different fermentation durations (42, 47, and 52 hours). Methods: Soybean seeds and tempeh samples were extracted using a cold extraction method and analyzed for daidzein and genistein content through the standard addition method. Results: The results indicated variations in daidzein and genistein content across the six soybean varieties and among tempeh products fermented for different durations. The tempeh produced from the Dering 1 soybean variety showed the highest daidzein content (2.59%), while the Devon 1 variety exhibited the highest genistein content (2.13%) after 47 hours of fermentation. Conclusions: These findings support the potential of tempeh made from local soybean varieties as a functional food, due to their elevated levels of bioactive isoflavones.

Keywords

Daidzein Soybean seed Tempeh

Article Details

How to Cite
Uswatun, S., Fitriansyah, S. N., & Herawati, I. E. (2025). Daidzein and Genistein Content in Tempeh Products from Several Local Soybean Varieties: Kandungan Daidzein dan Genistein Dalam Produk Tempe Dari Beberapa Varietas Kedelai Lokal (Glycine Max (L.) Merrill). Jurnal Farmasi Galenika (Galenika Journal of Pharmacy) (e-Journal), 11(2), 1-10. https://doi.org/10.22487/j24428744.2025.v11.i2.17247

References

  1. Ahnan-Winarno, A. D., Cordeiro, L., Winarno, F. G., Gibbons, J., & Xiao, H. (2021). Tempeh: A semicentennial review on its health benefits, fermentation, safety, processing, sustainability, and affordability. Comprehensive Reviews in Food Science and Food Safety, 20(2), 1717–1767. https://doi.org/10.1111/1541-4337.12710
  2. Astuti, M., Meliala, A., Dalais, F. S., & Wahlqvist, M. L. (2000). Tempe, a nutritious and healthy food from Indonesia. Asia Pacific Journal of Clinical Nutrition, 9(4), 322–325. https://doi.org/10.1046/j.1440-6047.2000.00176.x
  3. Bavia, A. C. F., Silva, C. E. da, Ferreira, M. P., Leite, R. S., Mandarino, J. M. G., & Carrão-Panizzi, M. C. (2012). Chemical composition of tempeh from soybean cultivars specially developed for human consumption. Food Science and Technology, 32(3), 613–620. https://doi.org/10.1590/s0101-20612012005000085
  4. Borges, C. W. C., Carrão-Panizzi, M. C., Mandarino, J. M. G., da Silva, J. B., Benedetti, S., & Ida, E. I. (2016). Conteúdo e bioconversão de isoflavonas β-glicosídeos em agliconas nas condições de processamento do tempeh de soja. Pesquisa Agropecuaria Brasileira, 51(3), 271–279. https://doi.org/10.1590/S0100-204X2016000300009
  5. Cahyati, Y., Santoso, D. R., & Juswono, U. P. (2013). Efek Radiasi pada Penurunan Estrogen yang Disertai Konsumsi Isoflavon untuk Mencegah Menopause Dini pada Terapi Radiasi, 2(2), 109–116.
  6. Choi, E. Y., Jin, J. Y., Lee, J. Y., Choi, J. I., Choi, I. S., & Kim, S. J. (2012). Anti-inflammatory effects and the underlying mechanisms of action of daidzein in murine macrophages stimulated with Prevotella intermedia lipopolysaccharide. Journal of Periodontal Research, 47(2), 204–211. https://doi.org/10.1111/j.1600-0765.2011.01422.x
  7. Dajanta, K., Janpum, P., & Leksing, W. (2013). Antioxidant capacities, total phenolics and flavonoids in black and yellow soybeans fermented by Bacillus subtilis: A comparative study of Thai fermented soybeans (thua nao). International Food Research Journal, 20(6), 3125–3132.
  8. Dinesh Babu, P., Bhakyaraj, R., & Vidhyalakshmi, R. (2009). A Low Cost Nutritious Food “Tempeh”-A Review. World Journal of Dairy & Food Sciences, 4(1), 22–27.
  9. Ferreira, M. P., Cristina, M., Oliveira, N. De, Marcos, J., & Mandarino, G. (2011). Changes in the isoflavone profile and in the chemical composition of tempeh during processing and refrigeration. Pesquisa Agropecuária Brasileira, 46(1), 1555–1561.
  10. Godfray, H. C. J., Aveyard, P., Garnett, T., Hall, J. W., Key, T. J., Lorimer, J., … Jebb, S. A. (2018). Meat consumption, health, and the environment. Science, 361(6399). https://doi.org/10.1126/science.aam5324
  11. Guzmán-Uriarte, M. L., Sánchez-Magaña, L. M., Angulo-Meza, G. Y., Cuevas-Rodríguez, E. O., Gutiérrez-Dorado, R., Mora-Rochín, S., … Reyes-Moreno, C. (2013). Solid State Bioconversion for Producing Common Bean (<i>Phaseolus</i> <i>vulgaris</i> L.) Functional Flour with High Antioxidant Activity and Antihypertensive Potential. Food and Nutrition Sciences, 04(04), 480–490. https://doi.org/10.4236/fns.2013.44061
  12. Haron, H., Ismail, A., Azlan, A., Shahar, S., & Peng, L. S. (2009). Daidzein and genestein contents in tempeh and selected soy products. Food Chemistry, 115(4), 1350–1356. https://doi.org/10.1016/j.foodchem.2009.01.053
  13. Hasanah, S. U., Sukrasno, Hartati, R., & W, D. P. (2020). Perbandingan Kandungan Genistein pada Berbagai Varietas Kedelai di Indonesia Comparison of Genistein Content on Some Soybean Varieties in Indonesia, 113–118.
  14. Hutabarat, L. S., Greenfield, H., & Mulholland, M. (2001). Isoflavones and Coumestrol in Soybeans and Soybean Products from Australia and Indonesia. Journal of Food Composition and Analysis, 14(1), 43–58. https://doi.org/10.1006/jfca.2000.0948
  15. Jamwal, S., & Sharma, S. (2019). Daidzein- A Caveolin Inhibitor Exerts Antihypertensive Effect and Improves Endothelium-Dependent Vasorelaxation in a Rat Model of DOCA-Salt-Induced Hypertension, 15(1), 1–8. https://doi.org/10.19080/JOCCT.2019.15.555905
  16. Jan, S., Khan, M. R., Rashid, U., & Bokhari, J. (2013). Assessment of Antioxidant Potential, Total Phenolics and Flavonoids of Different Solvent Fractions of Monotheca Buxifolia Fruit. Osong Public Health and Research Perspectives, 4(5), 246–254. https://doi.org/10.1016/j.phrp.2013.09.003
  17. Jin, S. E., Son, Y. K., Min, B. S., Jung, H. A., & Choi, J. S. (2012). Anti-inflammatory and antioxidant activities of constituents isolated from Pueraria lobata roots. Archives of Pharmacal Research, 35(5), 823–837. https://doi.org/10.1007/s12272-012-0508-x
  18. Jin, X., Sun, J., Yu, B., Wang, Y., Sun, W. J., Yang, J., … Xie, W. L. (2017). Daidzein stimulates osteogenesis facilitating proliferation, differentiation, and antiapoptosis in human osteoblast-like MG-63 cells via estrogen receptor–dependent MEK/ERK and PI3K/Akt activation. Nutrition Research, 42, 20–30. https://doi.org/10.1016/j.nutres.2017.04.009
  19. Kuligowski, M., Pawłowska, K., Jasińska-Kuligowska, I., & Nowak, J. (2017). Isoflavone composition, polyphenols content and antioxidative activity of soybean seeds during tempeh fermentation. CYTA - Journal of Food, 15(1), 27–33. https://doi.org/10.1080/19476337.2016.1197316
  20. Lecomte, S., Demay, F., Ferrière, F., & Pakdel, F. (2017). Phytochemicals targeting estrogen receptors: Beneficial rather than adverse effects? International Journal of Molecular Sciences, 18(7), 1–19. https://doi.org/10.3390/ijms18071381
  21. Li, H. Y., Pan, L., Ke, Y. S., Batnasan, E., Jin, X. Q., Liu, Z. Y., & Ba, X. Q. (2014). Daidzein suppresses pro-inflammatory chemokine Cxcl2 transcription in TNF-α-stimulated murine lung epithelial cells via depressing PARP-1 activity. Acta Pharmacologica Sinica, 35(4), 496–503. https://doi.org/10.1038/aps.2013.191
  22. Muthmainna, M., Sabang, S. M., & Supriadi, S. (2017). Pengaruh Waktu Fermentasi Terhadap Kadar Protein Dari Tempe Biji Buah Lamtoro Gung (Leucaena leucocephala). Jurnal Akademika Kimia, 5(1), 50. https://doi.org/10.22487/j24775185.2016.v5.i1.8001
  23. Nakajima, N., Nozaki, N., Ishihara, K., Ishikawa, A., & Tsuji, H. (2005). Analysis of Isoflavone Content in Tempeh , a Fermented Soybean , and Preparation of a New Isoflavone-Enriched Tempeh. Journal Of Bioscience and Bioenggineering, 100(6), 685–687. https://doi.org/10.1263/jbb.100.685
  24. Nout, M. J. R., & Kiers, J. L. (2005). Tempe fermentation , innovation and functionality : update into the third millenium. Journal of Applied Microbiology, 98, 789–805. https://doi.org/10.1111/j.1365-2672.2004.02471.x
  25. Peng, Y., Shi, Y., Zhang, H., Mine, Y., & Tsao, R. (2017). Anti-inflammatory and anti-oxidative activities of daidzein and its sulfonic acid ester derivatives. Journal of Functional Foods, 35, 635–640. https://doi.org/10.1016/j.jff.2017.06.027
  26. Sun, J. ming, Sun, B. li, Han, F. xia, Yan, S. rong, Yang, H., & Akio, K. (2011). Rapid HPLC Method for Determination of 12 Isoflavone Components in Soybean Seeds. Agricultural Sciences in China, 10(1), 70–77. https://doi.org/10.1016/S1671-2927(11)60308-8
  27. Susanto, G. W. A., & Nugrahaeni, N. (2016). Pengenalan dan karakteristik varietas unggul kedelai. Prosiding Seminar Hasil Penelitian Tanaman Aneka Kacang Dan Umbi 2011, (61), 17–28.
  28. Van Duursen, M. B. M. (2017). Modulation of estrogen synthesis and metabolism by phytoestrogens: In vitro and the implications for women’s health. Toxicology Research, 6(6), 772–794. https://doi.org/10.1039/c7tx00184c
  29. Vong, W. C., & Liu, S. Q. (2016). Biovalorisation of okara (soybean residue) for food and nutrition. Trends in Food Science and Technology, 52, 139–147. https://doi.org/10.1016/j.tifs.2016.04.011
  30. Wei, G., Liang, T., Wei, C., Nong, X., Lu, Q., & Zhao, J. (2019). Daidzin inhibits RANKL-induced osteoclastogenesis in vitro and prevents LPS-induced bone loss in vivo. Journal of Cellular Biochemistry, 120(4), 5304–5314. https://doi.org/10.1002/jcb.27806