Main Article Content

Abstract

Evaluasi kinerja klasifikasi dapat ditentukan berdasarkan persentase besarnya kesalahan klasifikasi (misclassification rate atau MCR). Penelitian ini bertujuan membandingkan kinerja klasifikasi ketepatan waktu kelulusan mahasiswa FMIPA UNTAD dengan menggunakan metode support vector machine dan regresi logistik biner. Hasil penelitian diperoleh bahwa kesalahan klasifikasi dengan menggunakan metode Support Vector Machine (SVM) dan regresi logistik biner masing-masing sebesar 16.84% dan 19.3%. Berdasarkan perbandingan kinerja kedua metode tersebut, metode dengan kesalahan klasifikasi terkecil adalah metode Support Vector Machine. Metode tersebut dapat digunakan untuk mengklasifikasikan ketepatan waktu kelulusan mahasiswa FMIPA UNTAD

Article Details

How to Cite
Utami, I. T. (2018). PERBANDINGAN KINERJA KLASIFIKASI SUPPORT VECTOR MACHINE (SVM) DAN REGRESI LOGISTIK BINER DALAM MENGKLASIFIKASIKAN KETEPATAN WAKTU KELULUSAN MAHASISWA FMIPA UNTAD. JURNAL ILMIAH MATEMATIKA DAN TERAPAN, 15(2), 256-267. https://doi.org/10.22487/2540766X.2018.v15.i2.11361