Main Article Content
Abstract
Leprosy is a chronic infectious disease that remains a public health concern in Indonesia, particularly in provinces where the disease is still endemic. North Sulawesi Province is among the regions with relatively high leprosy incidence, indicating the need for province-level analysis to better understand the factors associated with the occurrence of the disease. This study aims to identify the factors influencing the number of leprosy cases in North Sulawesi Province. The explanatory variables considered include the percentage of people living in poverty, the number of health workers, the percentage of toddlers immunized with BCG, the percentage of the population covered by health insurance, the percentage of households with access to clean drinking water, and the percentage of households with access to proper sanitation. The study uses secondary data obtained from official publications of the Central Statistics Agency (BPS) of North Sulawesi Province for the year 2023. Since the response variable is count data, Poisson regression was initially applied. However, due to the presence of overdispersion, Negative Binomial Regression was employed as an alternative modeling approach to obtain more reliable parameter estimates. The results indicate that the percentage of the population covered by health insurance has a statistically significant effect on the number of leprosy cases, with higher coverage associated with a reduction in reported cases. Other variables were found to have no significant effect at the chosen significance level. In conclusion, the findings highlight the importance of health insurance coverage in reducing leprosy incidence in North Sulawesi Province. The use of Negative Binomial Regression proves to be appropriate for modeling overdispersed leprosy case data and can support evidence-based policymaking in leprosy control programs.
Keywords
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Aipassa, A. D., Wattimena, A. Z., & Haumahu, G. (2023). Analisis Faktor-Faktor Yang Mempengaruhi Jumlah Penyakit Kusta Di Provinsi Maluku Dengan Menggunakan Regresi Binomial Negatif. PARAMETER: Jurnal Matematika, Statistika Dan Terapannya, 2(02), 87–100. https://doi.org/10.30598/parameterv2i02pp87-100
- Badriawan, M. J., & Melaniani, S. (2023). Aplikasi Generalized Poisson Regression untuk Memodelkan Faktor yang Mempengaruhi Jumlah Kasus Baru Difteri di Provinsi Jawa Timur Tahun 2018. Media Gizi Kesmas, 12(2), 860–869. https://doi.org/10.20473/mgk.v12i2.2023.860-869
- Dhahari, N. M., & Sofro, A. (2023). Analisis Regresi Binomial Negatif Untuk Pemodelan Angka Positif Penyakit Kusta Di Jawa Timur. Jurnal Ilmiah Matematika, 11(3), 543–550.
- Fadri, F., Firmansyah, A., & Erlanda, V. A. (2025). Negative Binomial Regression Modeling to Analyze the Determinants of Infant Mortality in West Java Province. BERKALA SAINSTEK 2025, 13(1), 8–14. https://doi.org/10.19184/bst.v13i1.53686
- Fathurahman, M. (2022). Regresi Binomial Negatif untuk Memodelkan Kematian Bayi di Kalimantan Timur. Eksponensial, 13(1), 79–86. https://doi.org/10.30872/eksponensial.v13i1.888
- Halim, A. O., & Satyahadewi, N. (2025). Factor Analysis on Poverty in Kalimantan Island with Geographically Weighted Negative Binomial Regression. Pattimura International Journal Of Mathematics (PIJMath), 4(1), 41–52.
- Khotimah, K., Sulvianti, I. D., & Silvianti, P. (2021). Pemodelan Dengan Geographically Weighted Negative Binomial Regression (Studi kasus: Banyaknya Penderita Kusta di Jawa Barat). Xplore: Journal of Statistics, 10(3), 226–236. https://doi.org/10.29244/xplore.v10i3.833
- Maneking, F. D. G., Salaki, D. T., & Hatidja, D. (2020). Model Regresi Poisson Tergeneralisasi untuk Anak Gizi Buruk di Sulawesi Utara. Jurnal Ilmiah Sains, 20(2), 141–146. https://doi.org/10.35799/jis.20.2.2020.29133
- Dyahlokita, S. (2025). Kenali Kusta: Penyakit Kulit yang Bisa Disembuhkan. Retrieved May 25, 2025, from Rumah Sakit Akademik Universitas Gadjah Mada website: https://rsa.ugm.ac.id/kenali-kusta-penyakit-kulit-yang-bisa-disembuhkan/#:~:text=Data Kementerian Kesehatan RI tahun,kasus kusta tertinggi di dunia.
- Salaki, D. T., Majore, M. M., & Prang, J. D. (2021). Penerapan Regresi Binomial Negatif Dalam Mengatasi Overdispersi Regresi Poisson Pada Kasus Jumlah Kematian Ibu. D’Cartesian: Jurnal Matematika Dan Aplikasi, 9(2), 133–139.
- Sauddin, A., Auliah, N. I., & Alwi, W. (2020). Pemodelan Jumlah Kematian Ibu di Provinsi Sulawesi Selatan Menggunakan Regresi Binomial Negatif. Jurnal MSA ( Matematika Dan Statistika Serta Aplikasinya ), 8(2), 42–47. https://doi.org/10.24252/msa.v8i2.17409
- Syafiqoh, A. J., Mahardika, R., Amaria, S., Winaryati, E., & Haris, A. M. (2024). Pemodelan Regresi Binomial Negatif untuk Mengevaluasi Faktor-faktor yang Mempengaruhi Kasus Tuberkulosis di Provinsi Jawa Barat. Jurnal Matematika Dan Statistika Serta Aplikasinya, 12(1), 15–23. https://doi.org/10.24252/msa.v12i1.39450
- Ulfa, Y. A., Soleh, A. M., & Sartono, B. (2021). Handling of Overdispersion in the Poisson Regression Model with Negative Binomial for the Number of New Cases of Leprosy in Java. Indonesian Journal of Statistics and Its Applications, 5(1), 1–13. https://doi.org/10.29244/ijsa.v5i1p1-13
- Widyaningsih, Y., Arum, G. P., & Prawira, K. (2021). Aplikasi K-Fold Cross Validation Dalam Penentuan Model Regresi Binomial Negatif Terbaik. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 15(2), 315–322. https://doi.org/10.30598/barekengvol15iss2pp315-322
- Winata, H. M. (2023). Mengatasi Overdispersi Dengan Regresi Binomial Negatif Pada Angka Kematian Ibu Di Kota Bandung. Jurnal Gaussian, 11(4), 616–622. https://doi.org/10.14710/j.gauss.11.4.616-622