Main Article Content

Abstract

A directed graph is also called as a quiver  where  is a finite set of vertices,  is a set of arrows, and  are two maps from  to . A representation  of a quiver  is an assignment of a vector space  to each vertex  of  and a linear mapping  to each arrow.  We denote by  the direct sum of representasions  and  of a quiver  . A representation  is called indecomposable if  is not ishomorphic to a direct sum of non-zero representations. This paper study about the properties of indecomposable representations. These properties will be used to investigate the necessary and sufficient condition of indecomposable representations.

Article Details